2D配列の対角線あたりの最大値


9

私は配列を持っていて、動的ウィンドウで最大のローリング差分が必要です。

a = np.array([8, 18, 5,15,12])
print (a)
[ 8 18  5 15 12]

だから私は最初に自分で違いを生み出します:

b = a - a[:, None]
print (b)
[[  0  10  -3   7   4]
 [-10   0 -13  -3  -6]
 [  3  13   0  10   7]
 [ -7   3 -10   0  -3]
 [ -4   6  -7   3   0]]

次に、上三角行列を0に置き換えます。

c = np.tril(b)
print (c)
[[  0   0   0   0   0]
 [-10   0   0   0   0]
 [  3  13   0   0   0]
 [ -7   3 -10   0   0]
 [ -4   6  -7   3   0]]

最後に対角線ごとの最大値が必要なので、次のことを意味します。

max([0,0,0,0,0]) = 0  
max([-10,13,-10,3]) = 13
max([3,3,-7]) = 3
max([-7,6]) = 6
max([-4]) = -4

したがって、予想される出力は次のとおりです。

[0, 13, 3, 6, -4]

いくつかの素晴らしいベクトル化されたソリューションとは何ですか?または、予想される出力に対して別の方法が考えられますか?

回答:


3

これが高度なインデックス作成を考慮してどれほど効率的であるかは正確にはわかりませんが、これはそのための1つの方法です。

import numpy as np

a = np.array([8, 18, 5, 15, 12])
b = a[:, None] - a
# Fill lower triangle with largest negative
b[np.tril_indices(len(a))] = np.iinfo(b.dtype).min  # np.finfo for float
# Put diagonals as rows
s = b.strides[1]
diags = np.ndarray((len(a) - 1, len(a) - 1), b.dtype, b, offset=s, strides=(s, (len(a) + 1) * s))
# Get maximum from each row and add initial zero
c = np.r_[0, diags.max(1)]
print(c)
# [ 0 13  3  6 -4]

編集:

あなたが探していたものではないかもしれない別の代替手段は、たとえば次のように、Numbaを使用することです:

import numpy as np
import numba as nb

def max_window_diffs_jdehesa(a):
    a = np.asarray(a)
    dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
    out = np.full_like(a, dtinf.min)
    _pwise_diffs(a, out)
    return out

@nb.njit(parallel=True)
def _pwise_diffs(a, out):
    out[0] = 0
    for w in nb.prange(1, len(a)):
        for i in range(len(a) - w):
            out[w] = max(a[i] - a[i + w], out[w])

a = np.array([8, 18, 5, 15, 12])
print(max_window_diffs(a))
# [ 0 13  3  6 -4]

これらの方法を元の方法と比較すると:

import numpy as np
import numba as nb

def max_window_diffs_orig(a):
    a = np.asarray(a)
    b = a - a[:, None]
    out = np.zeros(len(a), b.dtype)
    out[-1] = b[-1, 0]
    for i in range(1, len(a) - 1):
        out[i] = np.diag(b, -i).max()
    return out

def max_window_diffs_jdehesa_np(a):
    a = np.asarray(a)
    b = a[:, None] - a
    dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
    b[np.tril_indices(len(a))] = dtinf.min
    s = b.strides[1]
    diags = np.ndarray((len(a) - 1, len(a) - 1), b.dtype, b, offset=s, strides=(s, (len(a) + 1) * s))
    return np.concatenate([[0], diags.max(1)])

def max_window_diffs_jdehesa_nb(a):
    a = np.asarray(a)
    dtinf = np.iinfo(b.dtype) if np.issubdtype(b.dtype, np.integer) else np.finfo(b.dtype)
    out = np.full_like(a, dtinf.min)
    _pwise_diffs(a, out)
    return out

@nb.njit(parallel=True)
def _pwise_diffs(a, out):
    out[0] = 0
    for w in nb.prange(1, len(a)):
        for i in range(len(a) - w):
            out[w] = max(a[i] - a[i + w], out[w])

np.random.seed(0)
a = np.random.randint(0, 100, size=100)
r = max_window_diffs_orig(a)
print((max_window_diffs_jdehesa_np(a) == r).all())
# True
print((max_window_diffs_jdehesa_nb(a) == r).all())
# True

%timeit max_window_diffs_orig(a)
# 348 µs ± 986 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit max_window_diffs_jdehesa_np(a)
# 91.7 µs ± 1.3 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit max_window_diffs_jdehesa_nb(a)
# 19.7 µs ± 88.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

np.random.seed(0)
a = np.random.randint(0, 100, size=10000)
%timeit max_window_diffs_orig(a)
# 651 ms ± 26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit max_window_diffs_jdehesa_np(a)
# 1.61 s ± 6.19 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit max_window_diffs_jdehesa_nb(a)
# 22 ms ± 967 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

最初のものは、小さい配列には少し良いかもしれませんが、大きい配列にはうまく機能しません。一方、Numbaはすべてのケースでかなり良いです。


たとえば、10、100、1000の値の場合、回答するタイミングを追加できますaか?
jezrael

1
@jezrael可能なNumbaソリューションといくつかの時間測定を追加しました。私のNumPyソリューションは本当にうまく拡張できませんが、Numbaは優れていますが、それがあなたに役立つかどうかはわかりません。
jdehesa

4

使用する ndarray.diagonal

v = [max(c.diagonal(-i)) for i in range(b.shape[0])]
print(v) # [0, 13, 3, 6, -4]


1

これがベクトル化されたソリューションですstrides-

from skimage.util import view_as_windows

n = len(a)
z = np.zeros(n-1,dtype=a.dtype)
p = np.concatenate((a,z))

s = view_as_windows(p,n)
mask = np.tri(n,k=-1,dtype=bool)[:,::-1]
v = s[0]-s
out = np.where(mask,v.min()-1,v).max(1)

メモリー効率を高めるための1つのループ-

n = len(a)
out = [max(a[:-i+n]-a[i:]) for i in range(n)]

np.max代わりにmax使用して、配列メモリをより効率的に使用します。


1
@jezrael私が思うデータサイズに依存します。大きいサイズの場合、メモリ効率が高いため、slicing + maxのルーピーなものが勝つと思います。
Divakar

1

正方形以外の形状の配列を再形成(N+1, N)(N, N+1)て対角線を列として表示するという事実を悪用することができます

from scipy.linalg import toeplitz
a = toeplitz([1,2,3,4], [1,4,3])
# array([[1, 4, 3],
#        [2, 1, 4],
#        [3, 2, 1],
#        [4, 3, 2]])
a.reshape(3, 4)
# array([[1, 4, 3, 2],
#        [1, 4, 3, 2],
#        [1, 4, 3, 2]])

次のように使用できます(記号を入れ替えて下の三角形をゼロに設定したことに注意してください)

smallv = -10000  # replace this with np.nan if you have floats

a = np.array([8, 18, 5,15,12])
b = a[:, None] - a

b[np.tril_indices(len(b), -1)] = smallv
d = np.vstack((b, np.full(len(b), smallv)))

d.reshape(len(d) - 1, -1).max(0)[:-1]
# array([ 0, 13,  3,  6, -4])
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.