次の例外が発生します
TypeError: An op outside of the function building code is being passed
a "Graph" tensor. It is possible to have Graph tensors
leak out of the function building context by including a
tf.init_scope in your function building code.
For example, the following function will fail:
@tf.function
def has_init_scope():
my_constant = tf.constant(1.)
with tf.init_scope():
added = my_constant * 2
The graph tensor has name: conv2d_flipout/divergence_kernel:0
また、次の例外が発生します
tensorflow.python.eager.core._SymbolicException: Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Tensor 'conv2d_flipout/divergence_kernel:0' shape=() dtype=float32>]
次のコードを実行すると
from __future__ import print_function
import tensorflow as tf
import tensorflow_probability as tfp
def get_bayesian_model(input_shape=None, num_classes=10):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Input(shape=input_shape))
model.add(tfp.layers.Convolution2DFlipout(6, kernel_size=5, padding="SAME", activation=tf.nn.relu))
model.add(tf.keras.layers.Flatten())
model.add(tfp.layers.DenseFlipout(84, activation=tf.nn.relu))
model.add(tfp.layers.DenseFlipout(num_classes))
return model
def get_mnist_data(normalize=True):
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
if tf.keras.backend.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
if normalize:
x_train /= 255
x_test /= 255
return x_train, y_train, x_test, y_test, input_shape
def train():
# Hyper-parameters.
batch_size = 128
num_classes = 10
epochs = 1
# Get the training data.
x_train, y_train, x_test, y_test, input_shape = get_mnist_data()
# Get the model.
model = get_bayesian_model(input_shape=input_shape, num_classes=num_classes)
# Prepare the model for training.
model.compile(optimizer=tf.keras.optimizers.Adam(), loss="sparse_categorical_crossentropy",
metrics=['accuracy'])
# Train the model.
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1)
model.evaluate(x_test, y_test, verbose=0)
if __name__ == "__main__":
train()
問題は明らかにレイヤーに関連していtfp.layers.Convolution2DFlipout
ます。なぜこれらの例外が発生するのですか?これは私のコードの論理エラーが原因ですか、それともTensorFlowまたはTensorFlow Probabilityのバグですか?これらのエラーはどういう意味ですか?どうすれば解決できますか?
TensorFlow 2.0.0(デフォルトで熱心に実行されます)を使用しています。TensorFlow Probability 0.8.0およびPython 3.7.4。また、こことここで関連する問題を開きました。
TensorFlow 1を使用してコードを遅延実行する(つまり、tf.compat.v1.disable_eager_execution()
TensorFlowをインポートした後に使用すると、上記のコードが上記の例外なしで実行されることがわかっているため)、または明示的にセッションを作成することを提案しないでください。またはプレースホルダー。