この質問をしてからしばらく経ちますが、誰かの助けになることを願って回答を投稿します。
免責事項:このソリューションが標準ではないことは知っていますが、うまく機能すると思います。
import pandas as pd
import numpy as np
data = np.array([[10, 2, 10, 10],
[10, 3, 60, 100],
[np.nan] * 4,
[10, 22, 280, 250]]).T
idx = pd.date_range('20150131', end='20150203')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df
A B C D
=================================
2015-01-31 10 10 NaN 10
2015-02-01 2 3 NaN 22
2015-02-02 10 60 NaN 280
2015-02-03 10 100 NaN 250
def calculate(mul, add):
global value
value = value * mul + add
return value
value = df.loc['2015-01-31', 'D']
df.loc['2015-01-31', 'C'] = value
df.loc['2015-02-01':, 'C'] = df.loc['2015-02-01':].apply(lambda row: calculate(*row[['A', 'B']]), axis=1)
df
A B C D
=================================
2015-01-31 10 10 10 10
2015-02-01 2 3 23 22
2015-02-02 10 60 290 280
2015-02-03 10 100 3000 250
したがって、基本的には、apply
パンダのfromと、前に計算された値を追跡するグローバル変数の助けを借ります。
for
ループとの時間比較:
data = np.random.random(size=(1000, 4))
idx = pd.date_range('20150131', end='20171026')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df.C = np.nan
df.loc['2015-01-31', 'C'] = df.loc['2015-01-31', 'D']
%%timeit
for i in df.loc['2015-02-01':].index.date:
df.loc[i, 'C'] = df.loc[(i - pd.DateOffset(days=1)).date(), 'C'] * df.loc[i, 'A'] + df.loc[i, 'B']
ループあたり3.2秒±114ミリ秒(7回の実行の平均±標準偏差、各1ループ)
data = np.random.random(size=(1000, 4))
idx = pd.date_range('20150131', end='20171026')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df.C = np.nan
def calculate(mul, add):
global value
value = value * mul + add
return value
value = df.loc['2015-01-31', 'D']
df.loc['2015-01-31', 'C'] = value
%%timeit
df.loc['2015-02-01':, 'C'] = df.loc['2015-02-01':].apply(lambda row: calculate(*row[['A', 'B']]), axis=1)
ループあたり1.82秒±64.4ミリ秒(7回の実行の平均±標準偏差、各1ループ)
したがって、平均で0.57倍高速です。
A
と 異なるのはなぜB
ですか?