パフォーマンスに関して:psycoを使用する場合、リストはジェネレーターよりもかなり高速になる可能性があります。以下の例では、psyco.full()を使用すると、リストがほぼ50%高速になります。
import psyco
import time
import cStringIO
def time_func(func):
"""The amount of time it requires func to run"""
start = time.clock()
func()
return time.clock() - start
def fizzbuzz(num):
"""That algorithm we all know and love"""
if not num % 3 and not num % 5:
return "%d fizz buzz" % num
elif not num % 3:
return "%d fizz" % num
elif not num % 5:
return "%d buzz" % num
return None
def with_list(num):
"""Try getting fizzbuzz with a list comprehension and range"""
out = cStringIO.StringIO()
for fibby in [fizzbuzz(x) for x in range(1, num) if fizzbuzz(x)]:
print >> out, fibby
return out.getvalue()
def with_genx(num):
"""Try getting fizzbuzz with generator expression and xrange"""
out = cStringIO.StringIO()
for fibby in (fizzbuzz(x) for x in xrange(1, num) if fizzbuzz(x)):
print >> out, fibby
return out.getvalue()
def main():
"""
Test speed of generator expressions versus list comprehensions,
with and without psyco.
"""
nums = [10000, 100000]
funcs = [with_list, with_genx]
print "without psyco"
for num in nums:
print " number:", num
for func in funcs:
print func.__name__, time_func(lambda : func(num)), "seconds"
print
print "with psyco"
psyco.full()
for num in nums:
print " number:", num
for func in funcs:
print func.__name__, time_func(lambda : func(num)), "seconds"
print
if __name__ == "__main__":
main()
結果:
without psyco
number: 10000
with_list 0.0519102208309 seconds
with_genx 0.0535933367509 seconds
number: 100000
with_list 0.542204280744 seconds
with_genx 0.557837353115 seconds
with psyco
number: 10000
with_list 0.0286369007033 seconds
with_genx 0.0513424889137 seconds
number: 100000
with_list 0.335414877839 seconds
with_genx 0.580363490491 seconds
<5
ことを発見しました。