同じ結果をもたらす、reshapeメソッドを使用したアプローチ1とnp.newaxisメソッドを使用したアプローチ2を検討してください。
x = [1,2,3,4,5,6,7,8,9]
print('I. x',x)
xNpArr = np.array(x)
print('II. xNpArr',xNpArr)
print('III. xNpArr', xNpArr.shape)
xNpArr_3x3 = xNpArr.reshape((3,3))
print('IV. xNpArr_3x3.shape', xNpArr_3x3.shape)
print('V. xNpArr_3x3', xNpArr_3x3)
xNpArrRs_1x3x3x1 = xNpArr_3x3.reshape((1,3,3,1))
print('VI. xNpArrRs_1x3x3x1.shape', xNpArrRs_1x3x3x1.shape)
print('VII. xNpArrRs_1x3x3x1', xNpArrRs_1x3x3x1)
xNpArrNa_1x3x3x1 = xNpArr_3x3[np.newaxis, ..., np.newaxis]
print('VIII. xNpArrNa_1x3x3x1.shape', xNpArrNa_1x3x3x1.shape)
print('IX. xNpArrNa_1x3x3x1', xNpArrNa_1x3x3x1)
結果として次のようになります。
I. x [1, 2, 3, 4, 5, 6, 7, 8, 9]
II. xNpArr [1 2 3 4 5 6 7 8 9]
III. xNpArr (9,)
IV. xNpArr_3x3.shape (3, 3)
V. xNpArr_3x3 [[1 2 3]
[4 5 6]
[7 8 9]]
VI. xNpArrRs_1x3x3x1.shape (1, 3, 3, 1)
VII. xNpArrRs_1x3x3x1 [[[[1]
[2]
[3]]
[[4]
[5]
[6]]
[[7]
[8]
[9]]]]
VIII. xNpArrNa_1x3x3x1.shape (1, 3, 3, 1)
IX. xNpArrNa_1x3x3x1 [[[[1]
[2]
[3]]
[[4]
[5]
[6]]
[[7]
[8]
[9]]]]
numpy.newaxis
はNone
(ファイル内でnumeric.py
)と定義されているため、同等に `image = image [...、None]を使用できます。