ST_Distanceは空間クエリにインデックスを使用しません


10

最も単純なクエリでも、PostgreSQL 9.3.5でPostGIS 2.1を実行して空間インデックスを使用できません。データセット全体800万ポイント(ここから人口数グリッド)です。テーブルは次のように作成されます

CREATE TABLE points (
    population DOUBLE PRECISION NOT NULL,
    location GEOGRAPHY(4326, POINT) NOT NULL
)
CREATE INDEX points_gix ON points USING GIST(location);

クエリは取得するのと同じくらい簡単です

SELECT SUM(population)
FROM points
WHERE ST_Distance(
    location,
    ST_GeographyFromText('SRID=4326; POINT(0 0)')
) < 1000

PostgreSQLは常にSeqスキャンを使用します。私は10000ポイントのサブセットを試しました-まだSeqスキャンです。何か案は?


3
インデックスを使用できる関数は使用しません。代わりにst_dwithinを使用してください。次に、fuctionは最初にインデックススキャンを実行します。
NicklasAvén2014年

クエリが何をしているのかを考えてください。つまり、テーブルの各ポイントから固定ポイントまでの距離を計算します。インデックス使用できない理由を理解できます。代わりに、ST_DWithin
Vince

回答:


19

ST_Distanceは実際にはすべてのポイントのペア間の距離を計算するため、インデックスは使用できません。したがって、クエリはシーケンススキャンを実行し、指定した距離よりも短いジオメトリを選択します。インデックスを使用するST_DWithinを探しています。

SELECT SUM(population) FROM points 
WHERE ST_DWithin(location, ST_GeographyFromText('SRID=4326; POINT(0 0)'), 1000);

ST_Distanceは、多くの場合、ORDER BYやLIMITと組み合わせて、インデックスを使用するクエリで取得された結果の順序付けに役立ちます。


1
ありがとう。私は質問する前に本当にドキュメントを読むべきです。
シナプス2014

1
うわー!ありがとうございました!st_distanceをst_dwithinに変更したことにより、100倍以上の遅いクエリが "加速"されました。(私がもっと注意していたならば、これが最初に起こるべきではなかったので、私は「加速された」と言います)
ヘンディイラワン

1
@HendyIrawan。どういたしまして。簡単な間違いです。
John Powell

@JohnPowellakaBarça私は別の最適化を追加しましたが(非常に損失が大きいですが、私のケースに対する回答を追加しました)、ありがとうございます。
ヘンディイラワン

4

@JohnPowellakaBarçaが言っST_DWithin()たように、正確さを求めるときに行く方法です。

ただし、私の場合は大まかな見積もりだけが必要のでST_DWithin()、ニーズに対して(クエリコストで)高すぎます。私が使用&&してST_Expand(box2d)(でこれを誤解していないgeometry代わりに、バージョン)。例:

SELECT * FROM profile
  WHERE
    address_point IS NOT NULL AND
    address_point && CAST(ST_Expand(CAST(ST_GeomFromText(:point) AS box2d), 0.5) AS geometry;

すぐにわかるのは、メートルではなく度数を扱い、回転楕円体では円の代わりに境界ボックスを使用していることです。私の使用例では、これにより24ミリ秒から2ミリに削減されます(ローカルではSSDで)。ただし、同時接続とほとんど生成されないIOPSクォータ(100 IOPS)を使用するAWS RDS PostgreSQLの本番データベースでは、元のST_DWithin()クエリはIOPSを使いすぎ、実行時間が2000ミリ秒を超え、IOPSクォータが枯渇するとさらに悪くなります。

これはすべての人に当てはまるわけではありませんが、速度の精度を犠牲にすることができる場合(またはIOPSを節約する場合)は、このアプローチが適している可能性があります。以下のクエリプランで確認できるように、ST_DWithinCondの再チェックに加えて、ビットマップヒープスキャン内に空間フィルターが必要ですが&&、ボックスジオメトリでは、フィルターは必要なく、Condの再チェックのみを使用します。

また、IS NOT NULL問題があることに気づきました。問題がないと、クエリプランが悪化します。GISTインデックスはこれに対して「十分にスマート」ではないようです。(もちろん、列がの場合は必要ありませんがNOT NULL、私の場合は可能ですNULL

20000行テーブル、ST_DWithin(geography, geography, 100000, FALSE)300 RIOPSのAWS RDS 512 MB RAM:

Aggregate  (cost=4.61..4.62 rows=1 width=8) (actual time=2011.358..2011.358 rows=1 loops=1)
  ->  Bitmap Heap Scan on matchprofile  (cost=2.83..4.61 rows=1 width=0) (actual time=1735.025..2010.635 rows=1974 loops=1)
        Recheck Cond: (((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography)))
        Filter: (((status)::text = 'ACTIVE'::text) AND ((gender)::text = 'MALE'::text) AND (((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography) AND ('0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography && _st_expand(address_point, '100000'::double precision)) AND _st_dwithin(address_point, '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography, '100000'::double precision, false)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography) AND ('0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography && _st_expand(hometown_point, '100000'::double precision)) AND _st_dwithin(hometown_point, '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography, '100000'::double precision, false))))
        Rows Removed by Filter: 3323
        Heap Blocks: exact=7014
        ->  BitmapOr  (cost=2.83..2.83 rows=1 width=0) (actual time=1716.425..1716.425 rows=0 loops=1)
              ->  Bitmap Index Scan on ik_matchprofile_address_point  (cost=0.00..1.42 rows=1 width=0) (actual time=1167.698..1167.698 rows=16086 loops=1)
                    Index Cond: ((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography))
              ->  Bitmap Index Scan on ik_matchprofile_hometown_point  (cost=0.00..1.42 rows=1 width=0) (actual time=548.723..548.723 rows=7846 loops=1)
                    Index Cond: ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography))
Planning time: 47.366 ms
Execution time: 2011.429 ms

20000行テーブル、&&およびST_Expand(box2d)AWS RDSで300 IOPSの512 MB RAM:

Aggregate  (cost=3.85..3.86 rows=1 width=8) (actual time=584.346..584.346 rows=1 loops=1)
  ->  Bitmap Heap Scan on matchprofile  (cost=2.83..3.85 rows=1 width=0) (actual time=555.048..584.083 rows=1154 loops=1)
        Recheck Cond: (((address_point IS NOT NULL) AND (address_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography)))
        Filter: (((status)::text = 'ACTIVE'::text) AND ((gender)::text = 'MALE'::text))
        Rows Removed by Filter: 555
        Heap Blocks: exact=3812
        ->  BitmapOr  (cost=2.83..2.83 rows=1 width=0) (actual time=553.091..553.091 rows=0 loops=1)
              ->  Bitmap Index Scan on ik_matchprofile_address_point  (cost=0.00..1.42 rows=1 width=0) (actual time=413.074..413.074 rows=4850 loops=1)
                    Index Cond: ((address_point IS NOT NULL) AND (address_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography))
              ->  Bitmap Index Scan on ik_matchprofile_hometown_point  (cost=0.00..1.42 rows=1 width=0) (actual time=140.014..140.014 rows=3100 loops=1)
                    Index Cond: ((hometown_point IS NOT NULL) AND (hometown_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography))
Planning time: 0.673 ms
Execution time: 584.386 ms

もう一度簡単なクエリで:

20000行テーブル、ST_DWithin(geography, geography, 100000, FALSE)300 RIOPSのAWS RDS 512 MB RAM:

Aggregate  (cost=4.60..4.61 rows=1 width=8) (actual time=36.448..36.448 rows=1 loops=1)
  ->  Bitmap Heap Scan on matchprofile  (cost=2.83..4.60 rows=1 width=0) (actual time=7.694..35.545 rows=2982 loops=1)
        Recheck Cond: (((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography)))
        Filter: (((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography) AND ('0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography && _st_expand(address_point, '100000'::double precision)) AND _st_dwithin(address_point, '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography, '100000'::double precision, true)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography) AND ('0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography && _st_expand(hometown_point, '100000'::double precision)) AND _st_dwithin(hometown_point, '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography, '100000'::double precision, true)))
        Rows Removed by Filter: 2322
        Heap Blocks: exact=2947
        ->  BitmapOr  (cost=2.83..2.83 rows=1 width=0) (actual time=7.197..7.197 rows=0 loops=1)
              ->  Bitmap Index Scan on ik_matchprofile_address_point  (cost=0.00..1.41 rows=1 width=0) (actual time=5.265..5.265 rows=5680 loops=1)
                    Index Cond: ((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography))
              ->  Bitmap Index Scan on ik_matchprofile_hometown_point  (cost=0.00..1.41 rows=1 width=0) (actual time=1.930..1.930 rows=2743 loops=1)
                    Index Cond: ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography))
Planning time: 0.479 ms
Execution time: 36.512 ms

20000行テーブル、&&およびST_Expand(box2d)AWS RDSで300 IOPSの512 MB RAM:

Aggregate  (cost=3.84..3.85 rows=1 width=8) (actual time=6.263..6.264 rows=1 loops=1)
  ->  Bitmap Heap Scan on matchprofile  (cost=2.83..3.84 rows=1 width=0) (actual time=4.295..5.864 rows=1711 loops=1)
        Recheck Cond: (((address_point IS NOT NULL) AND (address_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography)))
        Heap Blocks: exact=1419
        ->  BitmapOr  (cost=2.83..2.83 rows=1 width=0) (actual time=4.122..4.122 rows=0 loops=1)
              ->  Bitmap Index Scan on ik_matchprofile_address_point  (cost=0.00..1.41 rows=1 width=0) (actual time=3.018..3.018 rows=1693 loops=1)
                    Index Cond: ((address_point IS NOT NULL) AND (address_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography))
              ->  Bitmap Index Scan on ik_matchprofile_hometown_point  (cost=0.00..1.41 rows=1 width=0) (actual time=1.102..1.102 rows=980 loops=1)
                    Index Cond: ((hometown_point IS NOT NULL) AND (hometown_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography))
Planning time: 0.399 ms
Execution time: 6.306 ms

1
良い書き込みと興味深い。
ジョンパウエル
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.