# 重いフラグメントシェーダーのパフォーマンスの最適化

9

バーテックス：

``````    precision mediump float;

uniform vec2 rubyTextureSize;

attribute vec4 vPosition;
attribute vec2 a_TexCoordinate;

varying vec2 tc;

void main() {
gl_Position = vPosition;

tc = a_TexCoordinate;
}``````

``````precision mediump float;

/*
Uniforms
- rubyTexture: texture sampler
- rubyTextureSize: size of the texture before rendering
*/

uniform sampler2D rubyTexture;
uniform vec2 rubyTextureSize;
uniform vec2 rubyTextureFract;

/*
Varying attributes
- tc: coordinate of the texel being processed
- xyp_[]_[]_[]: a packed coordinate for 3 areas within the texture
*/

varying vec2 tc;

/*
Constants
*/
/*
Inequation coefficients for interpolation
Equations are in the form: Ay + Bx = C
45, 30, and 60 denote the angle from x each line the cooeficient variable set builds
*/
const vec4 Ai = vec4(1.0, -1.0, -1.0, 1.0);
const vec4 B45 = vec4(1.0, 1.0, -1.0, -1.0);
const vec4 C45 = vec4(1.5, 0.5, -0.5, 0.5);
const vec4 B30 = vec4(0.5, 2.0, -0.5, -2.0);
const vec4 C30 = vec4(1.0, 1.0, -0.5, 0.0);
const vec4 B60 = vec4(2.0, 0.5, -2.0, -0.5);
const vec4 C60 = vec4(2.0, 0.0, -1.0, 0.5);

const vec4 M45 = vec4(0.4, 0.4, 0.4, 0.4);
const vec4 M30 = vec4(0.2, 0.4, 0.2, 0.4);
const vec4 M60 = M30.yxwz;
const vec4 Mshift = vec4(0.2);

// Coefficient for weighted edge detection
const float coef = 2.0;
// Threshold for if luminance values are "equal"
const vec4 threshold = vec4(0.32);

// Conversion from RGB to Luminance (from GIMP)
const vec3 lum = vec3(0.21, 0.72, 0.07);

// Performs same logic operation as && for vectors
bvec4 _and_(bvec4 A, bvec4 B) {
return bvec4(A.x && B.x, A.y && B.y, A.z && B.z, A.w && B.w);
}

// Performs same logic operation as || for vectors
bvec4 _or_(bvec4 A, bvec4 B) {
return bvec4(A.x || B.x, A.y || B.y, A.z || B.z, A.w || B.w);
}

// Converts 4 3-color vectors into 1 4-value luminance vector
vec4 lum_to(vec3 v0, vec3 v1, vec3 v2, vec3 v3) {
//    return vec4(dot(lum, v0), dot(lum, v1), dot(lum, v2), dot(lum, v3));

return mat4(v0.x, v1.x, v2.x, v3.x, v0.y, v1.y, v2.y, v3.y, v0.z, v1.z,
v2.z, v3.z, 0.0, 0.0, 0.0, 0.0) * vec4(lum, 0.0);
}

// Gets the difference between 2 4-value luminance vectors
vec4 lum_df(vec4 A, vec4 B) {
return abs(A - B);
}

// Determines if 2 4-value luminance vectors are "equal" based on threshold
bvec4 lum_eq(vec4 A, vec4 B) {
return lessThan(lum_df(A, B), threshold);
}

vec4 lum_wd(vec4 a, vec4 b, vec4 c, vec4 d, vec4 e, vec4 f, vec4 g, vec4 h) {
return lum_df(a, b) + lum_df(a, c) + lum_df(d, e) + lum_df(d, f)
+ 4.0 * lum_df(g, h);
}

// Gets the difference between 2 3-value rgb colors
float c_df(vec3 c1, vec3 c2) {
vec3 df = abs(c1 - c2);
return df.r + df.g + df.b;
}

void main() {

/*
+-----+-----+-----+-----+-----+
|     |  1  |  2  |  3  |     |
+-----+-----+-----+-----+-----+
|  5  |  6  |  7  |  8  |  9  |
+-----+-----+-----+-----+-----+
| 10  | 11  | 12  | 13  | 14  |
+-----+-----+-----+-----+-----+
| 15  | 16  | 17  | 18  | 19  |
+-----+-----+-----+-----+-----+
|     | 21  | 22  | 23  |     |
+-----+-----+-----+-----+-----+
*/

float x = rubyTextureFract.x;
float y = rubyTextureFract.y;

vec4 xyp_1_2_3 = tc.xxxy + vec4(-x, 0.0, x, -2.0 * y);
vec4 xyp_6_7_8 = tc.xxxy + vec4(-x, 0.0, x, -y);
vec4 xyp_11_12_13 = tc.xxxy + vec4(-x, 0.0, x, 0.0);
vec4 xyp_16_17_18 = tc.xxxy + vec4(-x, 0.0, x, y);
vec4 xyp_21_22_23 = tc.xxxy + vec4(-x, 0.0, x, 2.0 * y);
vec4 xyp_5_10_15 = tc.xyyy + vec4(-2.0 * x, -y, 0.0, y);
vec4 xyp_9_14_9 = tc.xyyy + vec4(2.0 * x, -y, 0.0, y);

// Get mask values by performing texture lookup with the uniform sampler
vec3 P1 = texture2D(rubyTexture, xyp_1_2_3.xw).rgb;
vec3 P2 = texture2D(rubyTexture, xyp_1_2_3.yw).rgb;
vec3 P3 = texture2D(rubyTexture, xyp_1_2_3.zw).rgb;

vec3 P6 = texture2D(rubyTexture, xyp_6_7_8.xw).rgb;
vec3 P7 = texture2D(rubyTexture, xyp_6_7_8.yw).rgb;
vec3 P8 = texture2D(rubyTexture, xyp_6_7_8.zw).rgb;

vec3 P11 = texture2D(rubyTexture, xyp_11_12_13.xw).rgb;
vec3 P12 = texture2D(rubyTexture, xyp_11_12_13.yw).rgb;
vec3 P13 = texture2D(rubyTexture, xyp_11_12_13.zw).rgb;

vec3 P16 = texture2D(rubyTexture, xyp_16_17_18.xw).rgb;
vec3 P17 = texture2D(rubyTexture, xyp_16_17_18.yw).rgb;
vec3 P18 = texture2D(rubyTexture, xyp_16_17_18.zw).rgb;

vec3 P21 = texture2D(rubyTexture, xyp_21_22_23.xw).rgb;
vec3 P22 = texture2D(rubyTexture, xyp_21_22_23.yw).rgb;
vec3 P23 = texture2D(rubyTexture, xyp_21_22_23.zw).rgb;

vec3 P5 = texture2D(rubyTexture, xyp_5_10_15.xy).rgb;
vec3 P10 = texture2D(rubyTexture, xyp_5_10_15.xz).rgb;
vec3 P15 = texture2D(rubyTexture, xyp_5_10_15.xw).rgb;

vec3 P9 = texture2D(rubyTexture, xyp_9_14_9.xy).rgb;
vec3 P14 = texture2D(rubyTexture, xyp_9_14_9.xz).rgb;
vec3 P19 = texture2D(rubyTexture, xyp_9_14_9.xw).rgb;

// Store luminance values of each point in groups of 4
// so that we may operate on all four corners at once
vec4 p7 = lum_to(P7, P11, P17, P13);
vec4 p8 = lum_to(P8, P6, P16, P18);
vec4 p11 = p7.yzwx; // P11, P17, P13, P7
vec4 p12 = lum_to(P12, P12, P12, P12);
vec4 p13 = p7.wxyz; // P13, P7,  P11, P17
vec4 p14 = lum_to(P14, P2, P10, P22);
vec4 p16 = p8.zwxy; // P16, P18, P8,  P6
vec4 p17 = p7.zwxy; // P17, P13, P7,  P11
vec4 p18 = p8.wxyz; // P18, P8,  P6,  P16
vec4 p19 = lum_to(P19, P3, P5, P21);
vec4 p22 = p14.wxyz; // P22, P14, P2,  P10
vec4 p23 = lum_to(P23, P9, P1, P15);

// Scale current texel coordinate to [0..1]
vec2 fp = fract(tc * rubyTextureSize);

// Determine amount of "smoothing" or mixing that could be done on texel corners
vec4 AiMulFpy = Ai * fp.y;
vec4 B45MulFpx = B45 * fp.x;
vec4 ma45 = smoothstep(C45 - M45, C45 + M45, AiMulFpy + B45MulFpx);
vec4 ma30 = smoothstep(C30 - M30, C30 + M30, AiMulFpy + B30 * fp.x);
vec4 ma60 = smoothstep(C60 - M60, C60 + M60, AiMulFpy + B60 * fp.x);
vec4 marn = smoothstep(C45 - M45 + Mshift, C45 + M45 + Mshift,
AiMulFpy + B45MulFpx);

// Perform edge weight calculations
vec4 e45 = lum_wd(p12, p8, p16, p18, p22, p14, p17, p13);
vec4 econt = lum_wd(p17, p11, p23, p13, p7, p19, p12, p18);
vec4 e30 = lum_df(p13, p16);
vec4 e60 = lum_df(p8, p17);

// Calculate rule results for interpolation
bvec4 r45_1 = _and_(notEqual(p12, p13), notEqual(p12, p17));
bvec4 r45_2 = _and_(not (lum_eq(p13, p7)), not (lum_eq(p13, p8)));
bvec4 r45_3 = _and_(not (lum_eq(p17, p11)), not (lum_eq(p17, p16)));
bvec4 r45_4_1 = _and_(not (lum_eq(p13, p14)), not (lum_eq(p13, p19)));
bvec4 r45_4_2 = _and_(not (lum_eq(p17, p22)), not (lum_eq(p17, p23)));
bvec4 r45_4 = _and_(lum_eq(p12, p18), _or_(r45_4_1, r45_4_2));
bvec4 r45_5 = _or_(lum_eq(p12, p16), lum_eq(p12, p8));
bvec4 r45 = _and_(r45_1, _or_(_or_(_or_(r45_2, r45_3), r45_4), r45_5));
bvec4 r30 = _and_(notEqual(p12, p16), notEqual(p11, p16));
bvec4 r60 = _and_(notEqual(p12, p8), notEqual(p7, p8));

// Combine rules with edge weights
bvec4 edr45 = _and_(lessThan(e45, econt), r45);
bvec4 edrrn = lessThanEqual(e45, econt);
bvec4 edr30 = _and_(lessThanEqual(coef * e30, e60), r30);
bvec4 edr60 = _and_(lessThanEqual(coef * e60, e30), r60);

// Finalize interpolation rules and cast to float (0.0 for false, 1.0 for true)
vec4 final45 = vec4(_and_(_and_(not (edr30), not (edr60)), edr45));
vec4 final30 = vec4(_and_(_and_(edr45, not (edr60)), edr30));
vec4 final60 = vec4(_and_(_and_(edr45, not (edr30)), edr60));
vec4 final36 = vec4(_and_(_and_(edr60, edr30), edr45));
vec4 finalrn = vec4(_and_(not (edr45), edrrn));

// Determine the color to mix with for each corner
vec4 px = step(lum_df(p12, p17), lum_df(p12, p13));

// Determine the mix amounts by combining the final rule result and corresponding
// mix amount for the rule in each corner
vec4 mac = final36 * max(ma30, ma60) + final30 * ma30 + final60 * ma60
+ final45 * ma45 + finalrn * marn;

/*
Calculate the resulting color by traversing clockwise and counter-clockwise around
the corners of the texel

Finally choose the result that has the largest difference from the texel's original
color
*/
vec3 res1 = P12;
res1 = mix(res1, mix(P13, P17, px.x), mac.x);
res1 = mix(res1, mix(P7, P13, px.y), mac.y);
res1 = mix(res1, mix(P11, P7, px.z), mac.z);
res1 = mix(res1, mix(P17, P11, px.w), mac.w);

vec3 res2 = P12;
res2 = mix(res2, mix(P17, P11, px.w), mac.w);
res2 = mix(res2, mix(P11, P7, px.z), mac.z);
res2 = mix(res2, mix(P7, P13, px.y), mac.y);
res2 = mix(res2, mix(P13, P17, px.x), mac.x);

gl_FragColor = vec4(mix(res1, res2, step(c_df(P12, res1), c_df(P12, res2))),
1.0);
}``````

シェーダーは2Dテクスチャを受け取り、高解像度の2Dサーフェス（デバイス画面）全体で美しくスケーリングすることを目的としています。これは、重要な場合のSABRスケーリングアルゴリズムの最適化です。

それは既に機能しており、非常にハイエンドのAndroidデバイス（LG Nexus 4など）では問題なく動作しますが、弱いデバイスでは本当に遅くなります。

これまでのところ、私は試しました：

1. 変動の排除（ARMのMaliガイドからのアドバイス）-マイナーな改善が行われました。
2. 私の独自のmix（）関数をオーバーライドする-うまくいきませんでした。
3. floatの精度をlowpに下げました-何も変更しませんでした。

レンダリング時間（eglSwapBuffersの前後）を計算してパフォーマンスを測定します。これにより、パフォーマンスの非常に直線的で一貫した測定が得られます。

それを超えて、どこを見るか、ここで最適化できるものは本当にわかりません...

1. すべてのテクスチャフェッチを依存ベクトルではなく定数ベクトルで実行すると、パフォーマンスが大幅に向上することがわかりました。これは明らかにキャッシュが原因で、明らかに大きなボトルネックになります。ただし、これらのフェッチを実行する必要があります。私は、少なくとも一部のフェッチをvec2バリエーション（スウィズリングなし）で実行しましたが、何も改善されませんでした。21テクセルを効率的にポーリングするための良い方法は何でしょうか。

2. 計算の大部分がまったく同じテクセルのセットで複数回実行されていることがわかりました。出力は少なくともx2でスケーリングされているため、GL_NEARESTでポーリングします。まったく同じテクセル上にある少​​なくとも4つのフラグメントがあります。高解像度デバイスでスケーリングがx4の場合、同じテクセルに16個のフラグメントが含まれます-これは大きな無駄です。複数のフラグメント間で変化しないすべての値を計算する追加のシェーダーパスを実行する方法はありますか？追加のオフスクリーンテクスチャへのレンダリングについて考えましたが、1つだけでなく、テクセルごとに複数の値を格納する必要があります。

1. また、GPUが大きなボトルネックになっている間、CPUはほとんど使用されていないことに気づきました。この状況で、CPUパワーを活用し、ロジックをGPUからCPUに転送する方法に関するアドバイスはありますか？

2
テクスチャをルックアップとしてフェッチしてはいけません。ピクセルシェーダーがテクスチャをフェッチする時間を持つように、頂点からUVを渡します。
Tordin 2013年

SirKnigget 2013年

3
「SABRスケーリングアルゴリズム」の説明にリンクできますか？グーグルはそれについて何か有用なものを見つけていません。ちなみに、モバイルGPUの21テクセルフィルター（および非常に演算負荷が高い）は、問題を求めています。どこかで品質を損なうことなくうまく実行できるとは現実的に期待できないと思います。
ネイサンリード

これは、一般的な考え方を提供します：board.byuu.org/viewtopic.php?f=10&t=2248、ただし、これは私が見つけた正確な実装ではありません。
SirKnigget 2013年

2

SirKnigget 2013年

2

21テクセルを効率的にポーリングするための良い方法は何でしょうか。

また、ディスクカーネルを忘れて、垂直カーネルを使用する2パスアルゴリズムを使用し、もう1つは純粋に水平を使用するアルゴリズムを使用することもできます。線形アクセスのおかげで、サンプリングとキャッシュパフォーマンスの向上。

ZストレージテクスチャはGPUメモリに配置する必要があるため、垂直フェッチはキャッシュのパフォーマンスに影響を与えません。cf http://en.wikipedia.org/wiki/Z-order_curve