私は(.NET、C、C ++などの高水準言語を使用する)ソフトウェア開発者であり、コンピューターが低レベルでどのように機能するかを理解しようとしています。
(上から下)/ 2で計算されるため、振幅は常に正であると理解しています。ただし、実際には負の振幅が何であるか、つまり波が平衡(0)を下回った場合はどういう意味かわかりません。
紛らわしい負の値はデシベル(dB)で示されます。
これはおそらく物理学の問題ですが、アナログ回路を理解しようとしています。
私は(.NET、C、C ++などの高水準言語を使用する)ソフトウェア開発者であり、コンピューターが低レベルでどのように機能するかを理解しようとしています。
(上から下)/ 2で計算されるため、振幅は常に正であると理解しています。ただし、実際には負の振幅が何であるか、つまり波が平衡(0)を下回った場合はどういう意味かわかりません。
紛らわしい負の値はデシベル(dB)で示されます。
これはおそらく物理学の問題ですが、アナログ回路を理解しようとしています。
回答:
デシベル()は比率を表す方法です。デシベルの最も実際的な使用法は、他のものと比較してあるものを測定することです。負のデシベル数は、測定されるものが基準のものより小さいことを示します。
例として考えてみましょう 、パワーを測定するユニット に関連して 。したがって:
したがって、1mWは次のとおりです。
どうですか ?
どうですか ?
電圧のようなものを検討する場合、電力は振幅の2乗に比例するため、値の2乗の比率を検討するのが通例です。例えば、 に 負荷は 、ただし電圧が2Vの場合 。これは厄介な慣習だと思います。デシベルで表した測定値を電力のようにしたい場合は、電力を測定する必要があります。しかし、それは慣習であり、おそらく電話ネットワークを開発したエンジニアのせいにすることができます。
とにかく、考えてみよう 、これは1Vを基準として使用します。ここに例があります:
両方の電圧を小数で二乗するのではなく、対数に2を掛けることができることに注意してください。2つは数学的には同等ですが、2を掛けることは二乗より簡単です。
The level for something like a sine wave is generally given as the RMS (Root Mean Square) value, which (for a sine wave) is 0.707 of the peak value.
For example, 240VAC mains voltage is actually (1/0.707) * 240V = 340V peak to peak - the RMS is used as this is the equivalent of the DC value power wise (i.e. 240VDC would provide the same power as 340VAC pk-pk) Since the RMS value is usually assumed, if you mean peak tp peak you should write e.g. 240VAC pk-pk if the highest pont is +/- 240V
Negative amplitude means the signal is attenuated relative to a reference point, so if you see e.g. -20dB, it means the signal is 1/10th of the reference value. dB on it's own is unitless, so you will see things like dBm (relative to 1mW → 0dB = 1mW), or dBV (relative to 1V → 0dB = 1V)
So if you see -3dBV, this means the level is 0.707 * 1V = 0.707V and -20dBV would be 0.1V.
Similarly 20dBV would mean 10V.
(In the below calculations log10 refers to the base 10 logarithm, as opposed to the natural logarithm or e.g. log2 for base 2 logarithm) The calculation for dB is 20 * log10(signal/ref), so for the above:
20 * log10(10/1) = 20dBV
For the 0.707 case:
20 * log10(0.707) = -3dBV
1mV in dBV would be:
20 * log10(0.001/1) = -60dBV
For measurements of power, the calculation is:
10 * log10(power_level/ref_power_level) so for example, 100W in dBW would be:
10 * log10(100/1) = 20dBW
So a negative amplitude means a reduction in amplitude relative to a reference point.
See the Wikipedia page on Decibels.
The question is a little unclear to me : but if you mean, how is amplitude measured or defined while the signal is below 0V, then remember the difference between speed and velocity : amplitude (like speed) is a magnitude, and is either zero or positive.
The signal (like velocity) is a vector : velocity is defined by speed and direction; signal (restricting the discussion to cosines for the moment) is defined by amplitude and phase. Thus the negative peak -V of the signal is defined as amplitude V and phase Pi (or 180 degrees).
More complex signals can be represented as a sum of different cosine waves with different frequencies, amplitude and phases, the Fourier transform is a technique for translating an arbitrary waveform into such a representation (and back again)
Decibels describe the ratio of signal strengths, according to how many factors of ten a new signal (such as some circuit's output) is compared to the original or some standard reference signal.
When the output is smaller than the input, you'll have to divide by some factors of ten -- the same as multiplying by 1/10, which is (10)^(-1). Thus negative decibels.
In the illustration, the big signal is an input to some gadget, and I made up the value 15.0V for its peak (from zero) amplitude. For a sine, the RMS voltage is 1/sqrt(2) of the peak amplitude. The peak-to-peak is double. The second sine wave has a smaller amplitude. If we imagine applying these sine waves to a simple load (the resistor), currents will flow in proportion to the voltages.
Power is voltage times current, so the smaller signal's power (heating the resistor) is (0.4)^2 of the original's power. This power ratio is what engineers usually care about.
Engineers, being fond of slide rules and easy math, use base ten logarithms for a lot of things. A chain of amplifiers and lossy filters can be dealt with more easily by adding logarithms of gains and losses, instead of multiplying the gains and loss factors. A factor of 10 is one "Bel" but since we're often dealing with fractional quantities like 0.3 Bel (a doubling of power), for ages we've been using decibels to shift that decimal point over.
Note that dB always (usually) refer to power and not voltages. Note also that it doesn't matter if we use peak amplitude, peak-to-peak, or RMS, as long as we're consistent measuring the input and output the same way.
Zero decibels means unity gain, or no change in signal level, because .
Decibels are usually some relative measure, like output related to input.Positive decibel values are increases in signal level (amplification), and negative decibel values are decreases (attenuation).
I recently created a panel where some knobs are labeled as going from to decibels, with a gradation of negatively valued ticks in between. This reflects the fact that the knob is a linear potentiometer which attenuates the input signal. means that the signal is completely trimmed to zero, and means that the full signal is passed through. The midpoint is marked because the voltage is cut in half. Voltage cut in half means power is reduced to a quarter, which is about six decibels down: .
There exist scales of measure in which decibels are associated with some absolute level. In those scales, zero decibels will refer to a specific absolute voltage or wattage or other quantity. For example, in the dBm scale, 0 dB is one milliwatt. In the dBu scale, zero decibels is 0.775 VRMS.
Regarding dB: that's a bit of an abuse of notation that appears on instrumentation, which everyone understands. Logarithms are not defined for zero, but grow large as their argument approaches zero from above. Of course, infinity is not a number, and a zero signal has no defined decibel value.