いくつかの実験の結果、結果セットが最大ドキュメントサイズに収まると仮定すると、MapReduceに基づいてランキング関数を構築できることがわかりました。
たとえば、次のようなコレクションがあるとします。
{ player: "joe", points: 1000, foo: 10, bar: 20, bang: "some text" }
{ player: "susan", points: 2000, foo: 10, bar: 20, bang: "some text" }
{ player: "joe", points: 1500, foo: 10, bar: 20, bang: "some text" }
{ player: "ben", points: 500, foo: 10, bar: 20, bang: "some text" }
...
私はDENSE_RANKの大まかな同等物を次のように実行できます:
var m = function() {
++g_counter;
if ((this.player == "joe") && (g_scores.length != g_fake_limit)) {
g_scores.push({
player: this.player,
points: this.points,
foo: this.foo,
bar: this.bar,
bang: this.bang,
rank: g_counter
});
}
if (g_counter == g_final)
{
emit(this._id, g_counter);
}
}}
var r = function (k, v) { }
var f = function(k, v) { return g_scores; }
var test_mapreduce = function (limit) {
var total_scores = db.scores.count();
return db.scores.mapReduce(m, r, {
out: { inline: 1 },
sort: { points: -1 },
finalize: f,
limit: total_scores,
verbose: true,
scope: {
g_counter: 0,
g_final: total_scores,
g_fake_limit: limit,
g_scores:[]
}
}).results[0].value;
}
比較のために、他の場所で言及されている「素朴な」アプローチを以下に示します。
var test_naive = function(limit) {
var cursor = db.scores.find({player: "joe"}).limit(limit).sort({points: -1});
var scores = [];
cursor.forEach(function(score) {
score.rank = db.scores.count({points: {"$gt": score.points}}) + 1;
scores.push(score);
});
return scores;
}
次のコードを使用して、MongoDB 1.8.2の単一インスタンスで両方のアプローチをベンチマークしました。
var rand = function(max) {
return Math.floor(Math.random() * max);
}
var create_score = function() {
var names = ["joe", "ben", "susan", "kevin", "lucy"]
return { player: names[rand(names.length)], points: rand(1000000), foo: 10, bar: 20, bang: "some kind of example text"};
}
var init_collection = function(total_records) {
db.scores.drop();
for (var i = 0; i != total_records; ++i) {
db.scores.insert(create_score());
}
db.scores.createIndex({points: -1})
}
var benchmark = function(test, count, limit) {
init_collection(count);
var durations = [];
for (var i = 0; i != 5; ++i) {
var start = new Date;
result = test(limit)
var stop = new Date;
durations.push(stop - start);
}
db.scores.drop();
return durations;
}
MapReduceは思ったよりも高速でしたが、特にキャッシュがウォームアップされた後は、単純なアプローチにより、コレクションサイズが大きくなると水面から吹き飛ばされました。
> benchmark(test_naive, 1000, 50);
[ 22, 16, 17, 16, 17 ]
> benchmark(test_mapreduce, 1000, 50);
[ 16, 15, 14, 11, 14 ]
>
> benchmark(test_naive, 10000, 50);
[ 56, 16, 17, 16, 17 ]
> benchmark(test_mapreduce, 10000, 50);
[ 154, 109, 116, 109, 109 ]
>
> benchmark(test_naive, 100000, 50);
[ 492, 15, 18, 17, 16 ]
> benchmark(test_mapreduce, 100000, 50);
[ 1595, 1071, 1099, 1108, 1070 ]
>
> benchmark(test_naive, 1000000, 50);
[ 6600, 16, 15, 16, 24 ]
> benchmark(test_mapreduce, 1000000, 50);
[ 17405, 10725, 10768, 10779, 11113 ]
とりあえず、今のところ、素朴なアプローチが適しているように見えますが、MongoDBチームがMapReduceのパフォーマンスを向上させ続ける今年の後半に話が変わるかどうかに興味があります。