これは伝統的な答えではありませんが、これまでに述べたテクニックのいくつかのベンチマークを投稿することは役立つと思いました。SQL Server 2017 CU9を搭載した96コアサーバーでテストしています。
多くのスケーラビリティの問題は、グローバルステートを巡って競合する同時スレッドが原因です。たとえば、従来のPFSページの競合を検討してください。これは、メモリ内の同じページを変更する必要があるワーカースレッドが多すぎる場合に発生する可能性があります。コードがより効率的になると、ラッチをより速く要求できます。それは競合を増やします。簡単に言うと、効率的なコードはスケーラビリティの問題につながる可能性が高くなります。これは、グローバル状態がより厳しく争われるためです。グローバル状態はそれほど頻繁にアクセスされないため、遅いコードはスケーラビリティの問題を引き起こす可能性が低くなります。
HASHBYTES
スケーラビリティは、入力文字列の長さに部分的に基づいています。私の理論では、これが発生する理由は、HASHBYTES
関数が呼び出されたときにグローバル状態へのアクセスが必要だということでした。観察しやすいグローバル状態は、SQL Serverの一部のバージョンで呼び出しごとにメモリページを割り当てる必要があることです。観察するのが難しいのは、ある種のOSの競合があることです。その結果、HASHBYTES
コードによって呼び出される頻度が低くなると、競合がなくなります。列の割合を減らす1つの方法。テーブルの定義は、下部のコードに含まれています。Local Factors™を削減するために、比較的小さなテーブルで動作する同時クエリを使用しています。私のクイックベンチマークコードは一番下にあります。HASHBYTES
呼び出しは呼び出しごとに必要なハッシュ処理の量を増やすことです。ハッシュ処理は、部分的に入力文字列の長さに基づいています。アプリケーションで見たスケーラビリティの問題を再現するには、デモデータを変更する必要がありました。合理的な最悪のシナリオは、21の表ですBIGINT
MAXDOP 1
関数は異なるハッシュ長を返すことに注意してください。MD5
そしてSpookyHash
、両方の128ビットハッシュであり、SHA256
256ビットのハッシュです。
結果(NVARCHAR
vs VARBINARY
変換および連結)
変換、及び連結かどうかを確認するために、VARBINARY
より真のより効率的な/のパフォーマンスでありNVARCHAR
、NVARCHAR
バージョンのRUN_HASHBYTES_SHA2_256
ストアドプロシージャが同じテンプレートから作成された(中「ステップ5」を参照してベンチマーキングCODEの下部分)。唯一の違いは次のとおりです。
- ストアドプロシージャ名の末尾は
_NVC
BINARY(8)
以下のためのCAST
関数であることに変更されましたNVARCHAR(15)
0x7C
に変更されました N'|'
その結果:
CAST(FK1 AS NVARCHAR(15)) + N'|' +
の代わりに:
CAST(FK1 AS BINARY(8)) + 0x7C +
次の表には、1分間に実行されるハッシュの数が含まれています。テストは、以下に示す他のテストで使用されたものとは異なるサーバーで実行されました。
╔════════════════╦══════════╦══════════════╗
║ Datatype ║ Test # ║ Total Hashes ║
╠════════════════╬══════════╬══════════════╣
║ NVARCHAR ║ 1 ║ 10200000 ║
║ NVARCHAR ║ 2 ║ 10300000 ║
║ NVARCHAR ║ AVERAGE ║ * 10250000 * ║
║ -------------- ║ -------- ║ ------------ ║
║ VARBINARY ║ 1 ║ 12500000 ║
║ VARBINARY ║ 2 ║ 12800000 ║
║ VARBINARY ║ AVERAGE ║ * 12650000 * ║
╚════════════════╩══════════╩══════════════╝
平均のみを見ると、次のように切り替えることの利点を計算できますVARBINARY
。
SELECT (12650000 - 10250000) AS [IncreaseAmount],
ROUND(((126500000 - 10250000) / 10250000) * 100.0, 3) AS [IncreasePercentage]
それは返します:
IncreaseAmount: 2400000.0
IncreasePercentage: 23.415
結果(ハッシュアルゴリズムと実装)
次の表には、1分間に実行されるハッシュの数が含まれています。たとえば、CHECKSUM
84の同時クエリを使用すると、タイムアウトになる前に20億を超えるハッシュが実行されました。
╔════════════════════╦════════════╦════════════╦════════════╗
║ Function ║ 12 threads ║ 48 threads ║ 84 threads ║
╠════════════════════╬════════════╬════════════╬════════════╣
║ CHECKSUM ║ 281250000 ║ 1122440000 ║ 2040100000 ║
║ HASHBYTES MD5 ║ 75940000 ║ 106190000 ║ 112750000 ║
║ HASHBYTES SHA2_256 ║ 80210000 ║ 117080000 ║ 124790000 ║
║ CLR Spooky ║ 131250000 ║ 505700000 ║ 786150000 ║
║ CLR SpookyLOB ║ 17420000 ║ 27160000 ║ 31380000 ║
║ SQL# MD5 ║ 17080000 ║ 26450000 ║ 29080000 ║
║ SQL# SHA2_256 ║ 18370000 ║ 28860000 ║ 32590000 ║
║ SQL# MD5 8k ║ 24440000 ║ 30560000 ║ 32550000 ║
║ SQL# SHA2_256 8k ║ 87240000 ║ 159310000 ║ 155760000 ║
╚════════════════════╩════════════╩════════════╩════════════╝
スレッド秒ごとの作業の観点から測定した同じ数値を表示する場合:
╔════════════════════╦════════════════════════════╦════════════════════════════╦════════════════════════════╗
║ Function ║ 12 threads per core-second ║ 48 threads per core-second ║ 84 threads per core-second ║
╠════════════════════╬════════════════════════════╬════════════════════════════╬════════════════════════════╣
║ CHECKSUM ║ 390625 ║ 389736 ║ 404782 ║
║ HASHBYTES MD5 ║ 105472 ║ 36872 ║ 22371 ║
║ HASHBYTES SHA2_256 ║ 111403 ║ 40653 ║ 24760 ║
║ CLR Spooky ║ 182292 ║ 175590 ║ 155982 ║
║ CLR SpookyLOB ║ 24194 ║ 9431 ║ 6226 ║
║ SQL# MD5 ║ 23722 ║ 9184 ║ 5770 ║
║ SQL# SHA2_256 ║ 25514 ║ 10021 ║ 6466 ║
║ SQL# MD5 8k ║ 33944 ║ 10611 ║ 6458 ║
║ SQL# SHA2_256 8k ║ 121167 ║ 55316 ║ 30905 ║
╚════════════════════╩════════════════════════════╩════════════════════════════╩════════════════════════════╝
すべての方法に関するいくつかの簡単な考え:
CHECKSUM
:予想どおり非常に優れたスケーラビリティ
HASHBYTES
:スケーラビリティの問題には、呼び出しごとに1つのメモリ割り当てとOSで消費される大量のCPUが含まれます
Spooky
:驚くほど優れたスケーラビリティ
Spooky LOB
:スピンロックSOS_SELIST_SIZED_SLOCK
は制御不能になります。これはCLR関数を介してLOBを渡す際の一般的な問題であると思われますが、よくわかりません
Util_HashBinary
:同じスピンロックの影響を受けるようです。おそらく私ができることはそれほど多くないので、これについてはまだ調べていません。
Util_HashBinary 8k
:非常に驚くべき結果、ここで何が起こっているのかわからない
小規模サーバーでテストされた最終結果:
╔═════════════════════════╦════════════════════════╦════════════════════════╗
║ Hash Algorithm ║ Hashes over 11 threads ║ Hashes over 44 threads ║
╠═════════════════════════╬════════════════════════╬════════════════════════╣
║ HASHBYTES SHA2_256 ║ 85220000 ║ 167050000 ║
║ SpookyHash ║ 101200000 ║ 239530000 ║
║ Util_HashSHA256Binary8k ║ 90590000 ║ 217170000 ║
║ SpookyHashLOB ║ 23490000 ║ 38370000 ║
║ Util_HashSHA256Binary ║ 23430000 ║ 36590000 ║
╚═════════════════════════╩════════════════════════╩════════════════════════╝
ベンチマークコード
セットアップ1:テーブルとデータ
DROP TABLE IF EXISTS dbo.HASH_SMALL;
CREATE TABLE dbo.HASH_SMALL (
ID BIGINT NOT NULL,
FK1 BIGINT NOT NULL,
FK2 BIGINT NOT NULL,
FK3 BIGINT NOT NULL,
FK4 BIGINT NOT NULL,
FK5 BIGINT NOT NULL,
FK6 BIGINT NOT NULL,
FK7 BIGINT NOT NULL,
FK8 BIGINT NOT NULL,
FK9 BIGINT NOT NULL,
FK10 BIGINT NOT NULL,
FK11 BIGINT NOT NULL,
FK12 BIGINT NOT NULL,
FK13 BIGINT NOT NULL,
FK14 BIGINT NOT NULL,
FK15 BIGINT NOT NULL,
FK16 BIGINT NOT NULL,
FK17 BIGINT NOT NULL,
FK18 BIGINT NOT NULL,
FK19 BIGINT NOT NULL,
FK20 BIGINT NOT NULL
);
INSERT INTO dbo.HASH_SMALL WITH (TABLOCK)
SELECT RN,
4000000 - RN, 4000000 - RN
,200000000 - RN, 200000000 - RN
, RN % 500000 , RN % 500000 , RN % 500000
, RN % 500000 , RN % 500000 , RN % 500000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
FROM (
SELECT TOP (10000) ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) RN
FROM master..spt_values t1
CROSS JOIN master..spt_values t2
) q
OPTION (MAXDOP 1);
DROP TABLE IF EXISTS dbo.LOG_HASHES;
CREATE TABLE dbo.LOG_HASHES (
LOG_TIME DATETIME,
HASH_ALGORITHM INT,
SESSION_ID INT,
NUM_HASHES BIGINT
);
セットアップ2:マスター実行プロセス
GO
CREATE OR ALTER PROCEDURE dbo.RUN_HASHES_FOR_ONE_MINUTE (@HashAlgorithm INT)
AS
BEGIN
DECLARE @target_end_time DATETIME = DATEADD(MINUTE, 1, GETDATE()),
@query_execution_count INT = 0;
SET NOCOUNT ON;
DECLARE @ProcName NVARCHAR(261); -- schema_name + proc_name + '[].[]'
DECLARE @RowCount INT;
SELECT @RowCount = SUM(prtn.[row_count])
FROM sys.dm_db_partition_stats prtn
WHERE prtn.[object_id] = OBJECT_ID(N'dbo.HASH_SMALL')
AND prtn.[index_id] < 2;
-- Load assembly if not loaded to prevent load time from skewing results
DECLARE @OptionalInitSQL NVARCHAR(MAX);
SET @OptionalInitSQL = CASE @HashAlgorithm
WHEN 1 THEN N'SELECT @Dummy = dbo.SpookyHash(0x1234);'
WHEN 2 THEN N'' -- HASHBYTES
WHEN 3 THEN N'' -- HASHBYTES
WHEN 4 THEN N'' -- CHECKSUM
WHEN 5 THEN N'SELECT @Dummy = dbo.SpookyHashLOB(0x1234);'
WHEN 6 THEN N'SELECT @Dummy = SQL#.Util_HashBinary(N''MD5'', 0x1234);'
WHEN 7 THEN N'SELECT @Dummy = SQL#.Util_HashBinary(N''SHA256'', 0x1234);'
WHEN 8 THEN N'SELECT @Dummy = SQL#.Util_HashBinary8k(N''MD5'', 0x1234);'
WHEN 9 THEN N'SELECT @Dummy = SQL#.Util_HashBinary8k(N''SHA256'', 0x1234);'
/* -- BETA / non-public code
WHEN 10 THEN N'SELECT @Dummy = SQL#.Util_HashSHA256Binary8k(0x1234);'
WHEN 11 THEN N'SELECT @Dummy = SQL#.Util_HashSHA256Binary(0x1234);'
*/
END;
IF (RTRIM(@OptionalInitSQL) <> N'')
BEGIN
SET @OptionalInitSQL = N'
SET NOCOUNT ON;
DECLARE @Dummy VARBINARY(100);
' + @OptionalInitSQL;
RAISERROR(N'** Executing optional initialization code:', 10, 1) WITH NOWAIT;
RAISERROR(@OptionalInitSQL, 10, 1) WITH NOWAIT;
EXEC (@OptionalInitSQL);
RAISERROR(N'-------------------------------------------', 10, 1) WITH NOWAIT;
END;
SET @ProcName = CASE @HashAlgorithm
WHEN 1 THEN N'dbo.RUN_SpookyHash'
WHEN 2 THEN N'dbo.RUN_HASHBYTES_MD5'
WHEN 3 THEN N'dbo.RUN_HASHBYTES_SHA2_256'
WHEN 4 THEN N'dbo.RUN_CHECKSUM'
WHEN 5 THEN N'dbo.RUN_SpookyHashLOB'
WHEN 6 THEN N'dbo.RUN_SR_MD5'
WHEN 7 THEN N'dbo.RUN_SR_SHA256'
WHEN 8 THEN N'dbo.RUN_SR_MD5_8k'
WHEN 9 THEN N'dbo.RUN_SR_SHA256_8k'
/* -- BETA / non-public code
WHEN 10 THEN N'dbo.RUN_SR_SHA256_new'
WHEN 11 THEN N'dbo.RUN_SR_SHA256LOB_new'
*/
WHEN 13 THEN N'dbo.RUN_HASHBYTES_SHA2_256_NVC'
END;
RAISERROR(N'** Executing proc: %s', 10, 1, @ProcName) WITH NOWAIT;
WHILE GETDATE() < @target_end_time
BEGIN
EXEC @ProcName;
SET @query_execution_count = @query_execution_count + 1;
END;
INSERT INTO dbo.LOG_HASHES
VALUES (GETDATE(), @HashAlgorithm, @@SPID, @RowCount * @query_execution_count);
END;
GO
セットアップ3:衝突検出プロセス
GO
CREATE OR ALTER PROCEDURE dbo.VERIFY_NO_COLLISIONS (@HashAlgorithm INT)
AS
SET NOCOUNT ON;
DECLARE @RowCount INT;
SELECT @RowCount = SUM(prtn.[row_count])
FROM sys.dm_db_partition_stats prtn
WHERE prtn.[object_id] = OBJECT_ID(N'dbo.HASH_SMALL')
AND prtn.[index_id] < 2;
DECLARE @CollisionTestRows INT;
DECLARE @CollisionTestSQL NVARCHAR(MAX);
SET @CollisionTestSQL = N'
SELECT @RowsOut = COUNT(DISTINCT '
+ CASE @HashAlgorithm
WHEN 1 THEN N'dbo.SpookyHash('
WHEN 2 THEN N'HASHBYTES(''MD5'','
WHEN 3 THEN N'HASHBYTES(''SHA2_256'','
WHEN 4 THEN N'CHECKSUM('
WHEN 5 THEN N'dbo.SpookyHashLOB('
WHEN 6 THEN N'SQL#.Util_HashBinary(N''MD5'','
WHEN 7 THEN N'SQL#.Util_HashBinary(N''SHA256'','
WHEN 8 THEN N'SQL#.[Util_HashBinary8k](N''MD5'','
WHEN 9 THEN N'SQL#.[Util_HashBinary8k](N''SHA256'','
--/* -- BETA / non-public code
WHEN 10 THEN N'SQL#.[Util_HashSHA256Binary8k]('
WHEN 11 THEN N'SQL#.[Util_HashSHA256Binary]('
--*/
END
+ N'
CAST(FK1 AS BINARY(8)) + 0x7C +
CAST(FK2 AS BINARY(8)) + 0x7C +
CAST(FK3 AS BINARY(8)) + 0x7C +
CAST(FK4 AS BINARY(8)) + 0x7C +
CAST(FK5 AS BINARY(8)) + 0x7C +
CAST(FK6 AS BINARY(8)) + 0x7C +
CAST(FK7 AS BINARY(8)) + 0x7C +
CAST(FK8 AS BINARY(8)) + 0x7C +
CAST(FK9 AS BINARY(8)) + 0x7C +
CAST(FK10 AS BINARY(8)) + 0x7C +
CAST(FK11 AS BINARY(8)) + 0x7C +
CAST(FK12 AS BINARY(8)) + 0x7C +
CAST(FK13 AS BINARY(8)) + 0x7C +
CAST(FK14 AS BINARY(8)) + 0x7C +
CAST(FK15 AS BINARY(8)) + 0x7C +
CAST(FK16 AS BINARY(8)) + 0x7C +
CAST(FK17 AS BINARY(8)) + 0x7C +
CAST(FK18 AS BINARY(8)) + 0x7C +
CAST(FK19 AS BINARY(8)) + 0x7C +
CAST(FK20 AS BINARY(8)) ))
FROM dbo.HASH_SMALL;';
PRINT @CollisionTestSQL;
EXEC sp_executesql
@CollisionTestSQL,
N'@RowsOut INT OUTPUT',
@RowsOut = @CollisionTestRows OUTPUT;
IF (@CollisionTestRows <> @RowCount)
BEGIN
RAISERROR('Collisions for algorithm: %d!!! %d unique rows out of %d.',
16, 1, @HashAlgorithm, @CollisionTestRows, @RowCount);
END;
GO
セットアップ4:クリーンアップ(すべてのテストプロセスを削除)
DECLARE @SQL NVARCHAR(MAX) = N'';
SELECT @SQL += N'DROP PROCEDURE [dbo].' + QUOTENAME(sp.[name])
+ N';' + NCHAR(13) + NCHAR(10)
FROM sys.objects sp
WHERE sp.[name] LIKE N'RUN[_]%'
AND sp.[type_desc] = N'SQL_STORED_PROCEDURE'
AND sp.[name] <> N'RUN_HASHES_FOR_ONE_MINUTE'
PRINT @SQL;
EXEC (@SQL);
セットアップ5:テストプロセスの生成
SET NOCOUNT ON;
DECLARE @TestProcsToCreate TABLE
(
ProcName sysname NOT NULL,
CodeToExec NVARCHAR(261) NOT NULL
);
DECLARE @ProcName sysname,
@CodeToExec NVARCHAR(261);
INSERT INTO @TestProcsToCreate VALUES
(N'SpookyHash', N'dbo.SpookyHash('),
(N'HASHBYTES_MD5', N'HASHBYTES(''MD5'','),
(N'HASHBYTES_SHA2_256', N'HASHBYTES(''SHA2_256'','),
(N'CHECKSUM', N'CHECKSUM('),
(N'SpookyHashLOB', N'dbo.SpookyHashLOB('),
(N'SR_MD5', N'SQL#.Util_HashBinary(N''MD5'','),
(N'SR_SHA256', N'SQL#.Util_HashBinary(N''SHA256'','),
(N'SR_MD5_8k', N'SQL#.[Util_HashBinary8k](N''MD5'','),
(N'SR_SHA256_8k', N'SQL#.[Util_HashBinary8k](N''SHA256'',')
--/* -- BETA / non-public code
, (N'SR_SHA256_new', N'SQL#.[Util_HashSHA256Binary8k]('),
(N'SR_SHA256LOB_new', N'SQL#.[Util_HashSHA256Binary](');
--*/
DECLARE @ProcTemplate NVARCHAR(MAX),
@ProcToCreate NVARCHAR(MAX);
SET @ProcTemplate = N'
CREATE OR ALTER PROCEDURE dbo.RUN_{{ProcName}}
AS
BEGIN
DECLARE @dummy INT;
SET NOCOUNT ON;
SELECT @dummy = COUNT({{CodeToExec}}
CAST(FK1 AS BINARY(8)) + 0x7C +
CAST(FK2 AS BINARY(8)) + 0x7C +
CAST(FK3 AS BINARY(8)) + 0x7C +
CAST(FK4 AS BINARY(8)) + 0x7C +
CAST(FK5 AS BINARY(8)) + 0x7C +
CAST(FK6 AS BINARY(8)) + 0x7C +
CAST(FK7 AS BINARY(8)) + 0x7C +
CAST(FK8 AS BINARY(8)) + 0x7C +
CAST(FK9 AS BINARY(8)) + 0x7C +
CAST(FK10 AS BINARY(8)) + 0x7C +
CAST(FK11 AS BINARY(8)) + 0x7C +
CAST(FK12 AS BINARY(8)) + 0x7C +
CAST(FK13 AS BINARY(8)) + 0x7C +
CAST(FK14 AS BINARY(8)) + 0x7C +
CAST(FK15 AS BINARY(8)) + 0x7C +
CAST(FK16 AS BINARY(8)) + 0x7C +
CAST(FK17 AS BINARY(8)) + 0x7C +
CAST(FK18 AS BINARY(8)) + 0x7C +
CAST(FK19 AS BINARY(8)) + 0x7C +
CAST(FK20 AS BINARY(8))
)
)
FROM dbo.HASH_SMALL
OPTION (MAXDOP 1);
END;
';
DECLARE CreateProcsCurs CURSOR READ_ONLY FORWARD_ONLY LOCAL FAST_FORWARD
FOR SELECT [ProcName], [CodeToExec]
FROM @TestProcsToCreate;
OPEN [CreateProcsCurs];
FETCH NEXT
FROM [CreateProcsCurs]
INTO @ProcName, @CodeToExec;
WHILE (@@FETCH_STATUS = 0)
BEGIN
-- First: create VARBINARY version
SET @ProcToCreate = REPLACE(REPLACE(@ProcTemplate,
N'{{ProcName}}',
@ProcName),
N'{{CodeToExec}}',
@CodeToExec);
EXEC (@ProcToCreate);
-- Second: create NVARCHAR version (optional: built-ins only)
IF (CHARINDEX(N'.', @CodeToExec) = 0)
BEGIN
SET @ProcToCreate = REPLACE(REPLACE(REPLACE(@ProcToCreate,
N'dbo.RUN_' + @ProcName,
N'dbo.RUN_' + @ProcName + N'_NVC'),
N'BINARY(8)',
N'NVARCHAR(15)'),
N'0x7C',
N'N''|''');
EXEC (@ProcToCreate);
END;
FETCH NEXT
FROM [CreateProcsCurs]
INTO @ProcName, @CodeToExec;
END;
CLOSE [CreateProcsCurs];
DEALLOCATE [CreateProcsCurs];
テスト1:衝突のチェック
EXEC dbo.VERIFY_NO_COLLISIONS 1;
EXEC dbo.VERIFY_NO_COLLISIONS 2;
EXEC dbo.VERIFY_NO_COLLISIONS 3;
EXEC dbo.VERIFY_NO_COLLISIONS 4;
EXEC dbo.VERIFY_NO_COLLISIONS 5;
EXEC dbo.VERIFY_NO_COLLISIONS 6;
EXEC dbo.VERIFY_NO_COLLISIONS 7;
EXEC dbo.VERIFY_NO_COLLISIONS 8;
EXEC dbo.VERIFY_NO_COLLISIONS 9;
EXEC dbo.VERIFY_NO_COLLISIONS 10;
EXEC dbo.VERIFY_NO_COLLISIONS 11;
テスト2:パフォーマンステストを実行する
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 1;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 2;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 3; -- HASHBYTES('SHA2_256'
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 4;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 5;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 6;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 7;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 8;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 9;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 10;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 11;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 13; -- NVC version of #3
SELECT *
FROM dbo.LOG_HASHES
ORDER BY [LOG_TIME] DESC;
解決すべき検証の問題
単一のSQLCLR UDFのパフォーマンステストに焦点を当てながら、初期に議論された2つの問題はテストに組み込まれていませんが、理想的には、どのアプローチがすべての要件を満たすかを判断するために調査する必要があります。
- この関数は、クエリごとに2回実行されます(インポート行に対して1回、現在の行に対して1回)。これまでのテストでは、テストクエリでUDFを1回だけ参照していました。この要素はオプションのランキングを変更しないかもしれませんが、念のため無視してはいけません。
その後削除されたコメントで、ポール・ホワイトは次のように言及していました。
HASHBYTES
CLRスカラー関数に置き換えることの1つの欠点-CLR関数はバッチモードを使用できないのに対し、バッチモードを使用できないようHASHBYTES
です。それはパフォーマンス面で重要かもしれません。
したがって、それは考慮すべきことであり、明らかにテストが必要です。SQLCLRオプションがビルトインよりも利点を提供しない場合、既存のハッシュ(少なくとも最大のテーブル)を関連テーブルにキャプチャするというSolomonの提案にHASHBYTES
重みが追加されます。
Clear()
メソッドがあることは知っていますが、Spookyを詳しく調べたことはありません。