数秒で実行されるかなり複雑なクエリがありますが、テーブル値の関数にラップすると、はるかに遅くなります。実際には終了させていませんが、終了せずに最大10分間実行されます。唯一の変更点は、2つの日付変数(日付リテラルで初期化された)を日付パラメーターに置き換えることです。
7秒で実行
DECLARE @StartDate DATE = '2011-05-21'
DECLARE @EndDate DATE = '2011-05-23'
DECLARE @Data TABLE (...)
INSERT INTO @Data(...) SELECT...
SELECT * FROM @Data
少なくとも10分間実行
CREATE FUNCTION X (@StartDate DATE, @EndDate DATE)
RETURNS TABLE AS RETURN
SELECT ...
SELECT * FROM X ('2011-05-21', '2011-05-23')
以前にRETURNS @Data TABLE(...)句を使用して関数をマルチステートメントTVFとして記述しましたが、インライン構造のそれを交換しても目立った変更はありませんでした。TVFの長い実行時間は実際のSELECT * FROM X
時間です。実際にUDFを作成するには数秒かかります。
問題のクエリを投稿することはできますが、それは少し長く(〜165行)、最初のアプローチの成功に基づいて、何か他のことが起こっているのではないかと疑っています。実行計画をざっと見て、それらは同じように見えます。
クエリを変更せずに小さなセクションに分割してみました。1つのセクションを単独で実行した場合、数秒以上かかることはありませんが、TVFはハングします。
よく似た質問/programming/4190506/sql-server-2005-table-valued-function-weird-performanceが表示されますが、ソリューションが適用されるかどうかはわかりません。おそらく誰かがこの問題を見て、より一般的な解決策を知っていますか?ありがとう!
数分の処理後のdm_exec_requestsは次のとおりです。
session_id 59
request_id 0
start_time 40688.46517
status running
command UPDATE
sql_handle 0x030015002D21AF39242A1101ED9E00000000000000000000
statement_start_offset 10962
statement_end_offset 16012
plan_handle 0x050015002D21AF3940C1E6B0040000000000000000000000
database_id 21
user_id 1
connection_id 314AE0E4-A1FB-4602-BF40-02D857BAD6CF
blocking_session_id 0
wait_type NULL
wait_time 0
last_wait_type SOS_SCHEDULER_YIELD
wait_resource
open_transaction_count 0
open_resultset_count 1
transaction_id 48030651
context_info 0x
percent_complete 0
estimated_completion_time 0
cpu_time 344777
total_elapsed_time 348632
scheduler_id 7
task_address 0x000000045FC85048
reads 1549
writes 13
logical_reads 30331425
text_size 2147483647
language us_english
date_format mdy
date_first 7
quoted_identifier 1
arithabort 1
ansi_null_dflt_on 1
ansi_defaults 0
ansi_warnings 1
ansi_padding 1
ansi_nulls 1
concat_null_yields_null 1
transaction_isolation_level 2
lock_timeout -1
deadlock_priority 0
row_count 105
prev_error 0
nest_level 1
granted_query_memory 170
executing_managed_code 0
group_id 2
query_hash 0xBE6A286546AF62FC
query_plan_hash 0xD07630B947043AF0
完全なクエリは次のとおりです。
CREATE FUNCTION Routine.MarketingDashboardECommerceBase (@StartDate DATE, @EndDate DATE)
RETURNS TABLE AS RETURN
WITH RegionsByCode AS (SELECT CountryCode, MIN(Region) AS Region FROM Staging.Volusion.MarketingRegions GROUP BY CountryCode)
SELECT
D.Date, Div.Division, Region.Region, C.Category1, C.Category2, C.Category3,
COALESCE(V.Visits, 0) AS Visits,
COALESCE(Dem.Demos, 0) AS Demos,
COALESCE(S.GrossStores, 0) AS GrossStores,
COALESCE(S.PaidStores, 0) AS PaidStores,
COALESCE(S.NetStores, 0) AS NetStores,
COALESCE(S.StoresActiveNow, 0) AS StoresActiveNow
-- This line causes the run time to climb from a few seconds to over an hour!
--COALESCE(V.Visits, 0) * COALESCE(ACS.AvgClickCost, GAAC.AvgAdCost, 0.00) AS TotalAdCost
-- This line alone does not inflate the run time
--ACS.AvgClickCost
-- This line is enough to increase the run time to at least a couple minutes
--GAAC.AvgAdCost
FROM
--Dates AS D
(SELECT SQLDate AS Date FROM Dates WHERE SQLDate BETWEEN @StartDate AND @EndDate) AS D
CROSS JOIN (SELECT 'UK' AS Division UNION SELECT 'US' UNION SELECT 'IN' UNION SELECT 'Unknown') AS Div
CROSS JOIN (SELECT Category1, Category2, Category3 FROM Routine.MarketingDashboardCampaignMap UNION SELECT 'Unknown', 'Unknown', 'Unknown') AS C
CROSS JOIN (SELECT DISTINCT Region FROM Staging.Volusion.MarketingRegions) AS Region
-- Visitors
LEFT JOIN
(
SELECT
V.Date,
CASE WHEN V.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN V.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END AS Division,
COALESCE(MR.Region, 'Unknown') AS Region,
C.Category1, C.Category2, C.Category3,
SUM(V.Visits) AS Visits
FROM
RawData.GoogleAnalytics.Visits AS V
INNER JOIN Routine.MarketingDashboardCampaignMap AS C ON V.LandingPage = C.LandingPage AND V.Campaign = C.Campaign AND V.Medium = C.Medium AND V.Referrer = C.Referrer AND V.Source = C.Source
LEFT JOIN Staging.Volusion.MarketingRegions AS MR ON V.Country = MR.CountryName
WHERE
V.Date BETWEEN @StartDate AND @EndDate
GROUP BY
V.Date,
CASE WHEN V.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN V.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END,
COALESCE(MR.Region, 'Unknown'), C.Category1, C.Category2, C.Category3
) AS V ON D.Date = V.Date AND Div.Division = V.Division AND Region.Region = V.Region AND C.Category1 = V.Category1 AND C.Category2 = V.Category2 AND C.Category3 = V.Category3
-- Demos
LEFT JOIN
(
SELECT
OD.SQLDate,
G.Division,
COALESCE(MR.Region, 'Unknown') AS Region,
COALESCE(C.Category1, 'Unknown') AS Category1,
COALESCE(C.Category2, 'Unknown') AS Category2,
COALESCE(C.Category3, 'Unknown') AS Category3,
SUM(D.Demos) AS Demos
FROM
Demos AS D
INNER JOIN Orders AS O ON D."Order" = O."Order"
INNER JOIN Dates AS OD ON O.OrderDate = OD.DateSerial
INNER JOIN MarketingSources AS MS ON D.Source = MS.Source
LEFT JOIN RegionsByCode AS MR ON MS.CountryCode = MR.CountryCode
LEFT JOIN
(
SELECT
G.TransactionID,
MIN (
CASE WHEN G.Country IN ('United Kingdom', 'Guernsey', 'Ireland', 'Jersey') THEN 'UK'
WHEN G.Country IN ('United States', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END
) AS Division
FROM
RawData.GoogleAnalytics.Geography AS G
WHERE
TransactionDate BETWEEN @StartDate AND @EndDate
AND NOT EXISTS (SELECT * FROM RawData.GoogleAnalytics.Geography AS G2 WHERE G.TransactionID = G2.TransactionID AND G2.EffectiveDate > G.EffectiveDate)
GROUP BY
G.TransactionID
) AS G ON O.VolusionOrderID = G.TransactionID
LEFT JOIN RawData.GoogleAnalytics.Referrers AS R ON O.VolusionOrderID = R.TransactionID AND NOT EXISTS (SELECT * FROM RawData.GoogleAnalytics.Referrers AS R2 WHERE R.TransactionID = R2.TransactionID AND R2.EffectiveDate > R.EffectiveDate)
LEFT JOIN Routine.MarketingDashboardCampaignMap AS C ON MS.LandingPage = C.LandingPage AND MS.Campaign = C.Campaign AND MS.Medium = C.Medium AND COALESCE(R.ReferralPath, '(not set)') = C.Referrer AND MS.SourceName = C.Source
WHERE
O.IsDeleted = 'No'
AND OD.SQLDate BETWEEN @StartDate AND @EndDate
GROUP BY
OD.SQLDate,
G.Division,
COALESCE(MR.Region, 'Unknown'),
COALESCE(C.Category1, 'Unknown'),
COALESCE(C.Category2, 'Unknown'),
COALESCE(C.Category3, 'Unknown')
) AS Dem ON D.Date = Dem.SQLDate AND Div.Division = Dem.Division AND Region.Region = Dem.Region AND C.Category1 = Dem.Category1 AND C.Category2 = Dem.Category2 AND C.Category3 = Dem.Category3
-- Stores
LEFT JOIN
(
SELECT
OD.SQLDate,
CASE WHEN O.VolusionCountryCode = 'GB' THEN 'UK'
WHEN A.CountryShortName IN ('U.S.', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END AS Division,
COALESCE(MR.Region, 'Unknown') AS Region,
COALESCE(CpM.Category1, 'Unknown') AS Category1,
COALESCE(CpM.Category2, 'Unknown') AS Category2,
COALESCE(CpM.Category3, 'Unknown') AS Category3,
SUM(S.Stores) AS GrossStores,
SUM(CASE WHEN O.DatePaid <> -1 THEN 1 ELSE 0 END) AS PaidStores,
SUM(CASE WHEN O.DatePaid <> -1 AND CD.WeekEnding <> OD.WeekEnding THEN 1 ELSE 0 END) AS NetStores,
SUM(CASE WHEN O.DatePaid <> -1 THEN SH.ActiveStores ELSE 0 END) AS StoresActiveNow
FROM
Stores AS S
INNER JOIN Orders AS O ON S."Order" = O."Order"
INNER JOIN Dates AS OD ON O.OrderDate = OD.DateSerial
INNER JOIN Dates AS CD ON O.CancellationDate = CD.DateSerial
INNER JOIN Customers AS C ON O.CustomerNow = C.Customer
INNER JOIN MarketingSources AS MS ON C.Source = MS.Source
INNER JOIN StoreHistory AS SH ON S.MostRecentHistory = SH.History
INNER JOIN Addresses AS A ON C.Address = A.Address
LEFT JOIN RegionsByCode AS MR ON MS.CountryCode = MR.CountryCode
LEFT JOIN Routine.MarketingDashboardCampaignMap AS CpM ON CpM.LandingPage = 'N/A' AND MS.Campaign = CpM.Campaign AND MS.Medium = CpM.Medium AND CpM.Referrer = 'N/A' AND MS.SourceName = CpM.Source
WHERE
O.IsDeleted = 'No'
AND OD.SQLDate BETWEEN @StartDate AND @EndDate
GROUP BY
OD.SQLDate,
CASE WHEN O.VolusionCountryCode = 'GB' THEN 'UK'
WHEN A.CountryShortName IN ('U.S.', 'Canada', 'Puerto Rico', 'U.S. Virgin Islands') THEN 'US'
ELSE 'IN' END,
COALESCE(MR.Region, 'Unknown'),
COALESCE(CpM.Category1, 'Unknown'),
COALESCE(CpM.Category2, 'Unknown'),
COALESCE(CpM.Category3, 'Unknown')
) AS S ON D.Date = S.SQLDate AND Div.Division = S.Division AND Region.Region = S.Region AND C.Category1 = S.Category1 AND C.Category2 = S.Category2 AND C.Category3 = S.Category3
-- Google Analytics spend
LEFT JOIN
(
SELECT
AC.Date, C.Category1, C.Category2, C.Category3, SUM(AC.AdCost) / SUM(AC.Visits) AS AvgAdCost
FROM
RawData.GoogleAnalytics.AdCosts AS AC
INNER JOIN
(
SELECT Campaign, Medium, Source, MIN(Category1) AS Category1, MIN(Category2) AS Category2, MIN(Category3) AS Category3
FROM Routine.MarketingDashboardCampaignMap
WHERE Category1 <> 'Affiliate'
GROUP BY Campaign, Medium, Source
) AS C ON AC.Campaign = C.Campaign AND AC.Medium = C.Medium AND AC.Source = C.Source
WHERE
AC.Date BETWEEN @StartDate AND @EndDate
GROUP BY
AC.Date, C.Category1, C.Category2, C.Category3
HAVING
SUM(AC.AdCost) > 0.00 AND SUM(AC.Visits) > 0
) AS GAAC ON D.Date = GAAC.Date AND C.Category1 = GAAC.Category1 AND C.Category2 = GAAC.Category2 AND C.Category3 = GAAC.Category3
-- adCenter spend
LEFT JOIN
(
SELECT Date, SUM(Spend) / SUM(Clicks) AS AvgClickCost
FROM RawData.AdCenter.Spend
WHERE Date BETWEEN @StartDate AND @EndDate
GROUP BY Date
HAVING SUM(Spend) > 0.00 AND SUM(Clicks) > 0
) AS ACS ON D.Date = ACS.Date AND C.Category1 = 'PPC' AND C.Category2 = 'adCenter' AND C.Category3 = 'N/A'
WHERE
V.Visits > 0 OR Dem.Demos > 0 OR S.GrossStores > 0
GO
SELECT * FROM Routine.MarketingDashboardECommerceBase('2011-05-21', '2011-05-23')