Keras RNNチュートリアルから:「RNNには注意が必要です。バッチサイズの選択が重要であり、損失とオプティマイザーの選択が重要です。いくつかの構成は収束しません。」
したがって、これはKeras上のLSTM-RNNのハイパーパラメーターのチューニングに関するより一般的な質問です。RNNに最適なパラメーターを見つけるためのアプローチについて知りたいです。
KerasのGithubでIMDBの例から始めました。
メインモデルは次のようになります。
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features,
test_split=0.2)
max_features = 20000
maxlen = 100 # cut texts after this number of words (among top max_features most common words)
batch_size = 32
model = Sequential()
model.add(Embedding(max_features, 128, input_length=maxlen))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
optimizer='adam',
class_mode="binary")
print("Train...")
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=3,
validation_data=(X_test, y_test), show_accuracy=True)
score, acc = model.evaluate(X_test, y_test,
batch_size=batch_size,
show_accuracy=True)
print('Test accuracy:', acc)
Test accuracy:81.54321846
81.5は公平なスコアであり、さらに重要なことは、モデルが完全に最適化されていなくても機能することを意味しています。
私のデータは時系列であり、タスクはバイナリ予測であり、例と同じです。そして今、私の問題は次のようになります。
#Training Data
train = genfromtxt(os.getcwd() + "/Data/trainMatrix.csv", delimiter=',', skip_header=1)
validation = genfromtxt(os.getcwd() + "/Data/validationMatrix.csv", delimiter=',', skip_header=1)
#Targets
miniTrainTargets = [int(x) for x in genfromtxt(os.getcwd() + "/Data/trainTarget.csv", delimiter=',', skip_header=1)]
validationTargets = [int(x) for x in genfromtxt(os.getcwd() + "/Data/validationTarget.csv", delimiter=',', skip_header=1)]
#LSTM
model = Sequential()
model.add(Embedding(train.shape[0], 64, input_length=train.shape[1]))
model.add(LSTM(64))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
optimizer='adam',
class_mode="binary")
model.fit(train, miniTrainTargets, batch_size=batch_size, nb_epoch=5,
validation_data=(validation, validationTargets), show_accuracy=True)
valid_preds = model.predict_proba(validation, verbose=0)
roc = metrics.roc_auc_score(validationTargets, valid_preds)
print("ROC:", roc)
ROC:0.5006526
モデルは基本的にIMDBのモデルと同じです。結果は何も学んでいないことを意味しますが。ただし、バニラMLP-NNを使用すると、同じ問題は発生しません。モデルが学習し、スコアが増加します。エポックの数を増やしてLTSMユニットの数を増減しようとしましたが、スコアは上がりません。
理論上、アルゴリズムはこの時系列データ用の多層パーセプトロンネットワークよりも優れたパフォーマンスを発揮するはずなので、ネットワークをチューニングする標準的なアプローチを知りたいと思います。