T-SNE、isomap、PCA、教師付きPCAなど、高次元のデータセットを視覚化するための多くの手法があります。また、データを2Dまたは3D空間に投影する動作を行っているため、 「。これらの埋め込み(多様体学習)メソッドのいくつかをここで説明します。
しかし、この「きれいな絵」は実際に意味があるのでしょうか?この埋め込まれた空間を視覚化することで、誰かがどのような洞察をつかむことができますか?
この埋め込まれた空間への投影は通常無意味だからです。たとえば、PCAによって生成された主成分にデータを投影する場合、それらの主成分(eiganvectors)はデータセット内のフィーチャに対応しません。それらは独自の機能スペースです。
同様に、t-SNEは、KLの発散を最小限に抑えるためにアイテムが互いに近くにあるスペースにデータを投影します。これはもはや元の機能空間ではありません。(間違っている場合は修正してください。ただし、分類を支援するためにt-SNEを使用するMLコミュニティの大きな努力はないと思います。ただし、これはデータの視覚化とは異なる問題です。)
なぜこれらの視覚化のいくつかについて人々がそんなに大したことをするのか、私は非常に大きく混乱しています。