ラベルのない時間領域信号のセットがあるとします。それらを2つまたは3つのクラスにクラスター化したい。オートエンコーダーは、入力の圧縮を学習する監視なしネットワークです。したがって、入力、重みと、バイアスと、および出力を指定すると、次の関係が見つかります。
したがって、は圧縮形式であり、は後者の再構成です。ここまでは順調ですね。
私が理解していないのは、これをクラスタリングに使用する方法です(それを行う方法がある場合)。たとえば、このペーパーの最初の図には、よくわからないブロック図があります。フィードフォワードネットワークへの入力としてを使用しますが、そのネットワークのトレーニング方法については言及されていません。私が無視しているものがあるのか、それとも論文が不完全なのかわかりません。また、最後のこのチュートリアルは、オートエンコーダーによって学習された重みを示しています。これらは、CNNが画像を分類するために学習するカーネルのようです。ですから...オートエンコーダの重みは、フィードフォワードネットワークで分類のためになんらかの方法で使用できると思いますが、その方法はわかりません。
私の疑問は:
- もし長さの時間領域信号である(すなわち、X ^ {(I)} \で\ mathbb {R} ^ {1 \回N} )、缶Z ^ {(I)}ベクトルだけでも?換言すれば、それはのための理にかなっている^ {(I)} Zことがマトリックスよりもその寸法が大きいのいずれかで1?そうではないと思いますが、確認したいだけです。
- これらの量のどれが分類器への入力になりますか?たとえば、信号を分類したいクラスと同じ数の出力ユニットを持つ従来のMLPを使用したい場合、この完全に接続されたネットワークの入力(、、他のもの)?
- このMLPで学習した重みとバイアスをどのように使用できますか?使用可能なラベルは絶対にないと想定しているため、ネットワークをトレーニングすることは不可能です。学習したとは、完全に接続されたネットワークで何らかの形で役立つはずですが、それらの使用方法はわかりません。
観察:MLPは最も基本的なアーキテクチャであるため、例としてMLPを使用したことに注意してください。ただし、質問は、時間領域信号の分類に使用できる他のすべてのニューラルネットワークに適用されます。