約40のディメンションを持つ時系列(8ポイント)で構成されるデータのセットがあります(したがって、各時系列は8 x 40です)。対応する出力(カテゴリの可能な結果)は0または1です。
複数の次元を持つ時系列の分類子を設計するための最良のアプローチは何でしょうか?
私の最初の戦略は、それらの時系列から特徴を抽出することでした:平均、標準、各次元の最大変動。RandomTreeForestのトレーニングに使用したデータセットを取得しました。これの全体的な素朴さを認識していて、悪い結果を得た後、私は今、より改善されたモデルを探しています。
私のリードは次のとおりです。各次元のシリーズを(KNNアルゴリズムとDWTを使用して)分類し、PCAで次元を減らし、多次元カテゴリに沿って最終的な分類子を使用します。MLは比較的新しいので、完全に間違っているかどうかはわかりません。