私は、EEGコンテキストでリカレントアーキテクチャを解釈する方法を知りたいです。具体的には、これを(LSTMのようなアーキテクチャーとは対照的に)再帰CNNと考えていますが、他のタイプの再帰ネットワークにも適用される可能性があります
R-CNNについて読んだとき、それらは通常、画像分類のコンテキストで説明されています。それらは通常、「時間をかけて学習する」または「現在の入力に対するtime-1の影響を含む」と表現されます。
この解釈/説明は、EEGデータを扱うときに本当に混乱します。脳波データで使用されているR-CNNの例はここにあります
それぞれが1x512アレイで構成されるトレーニング例があるとします。このアレイは、512の連続した時点で1つの電極の電圧測定値を取得します。これを(1D畳み込みを使用して)再発CNNへの入力として使用すると、モデルの再発部分が実際に「時間」をキャプチャしていませんよね?(前述の説明/説明によって暗示されるように)このコンテキストでは、時間はすでにアレイの2番目の次元によってキャプチャされているため
このように設定すると、ネットワークの繰り返し部分によって、通常のCNNが(時間でない場合でも)できないことを実際にモデル化できるようになりますか?
再発とは、たたみ込みを実行し、その結果を元の入力に追加し、再度たたみ込みを行うことを意味するだけのようです。これはx回の反復ステップで繰り返されます。このプロセスは実際にどのような利点をもたらしますか?