私はこれに興味があり、いくつかのテストを行いました。
ダイヤモンドデータセットでモデルをトレーニングし、変数「x」がダイヤモンドの価格が特定のしきい値よりも高いかどうかを予測するために最も重要であることを観察しました。次に、xと高度に相関する複数の列を追加し、同じモデルを実行し、同じ値を観察しました。
2つの列の相関が1の場合、xgboostはモデルを計算する前に余分な列を削除するため、重要性は影響を受けません。ただし、部分的に相関があり、係数が低い列を追加すると、元の変数xの重要性が低下します。
たとえば、変数xy = x + yを追加すると、xとyの両方の重要性が低下します。同様に、r = 0.4、0.5、または0.6の新しい変数を少し追加しても、xの重要性は低下します。
モデルの精度を計算するとき、共線性はブーストの問題ではないと思います。なぜなら、決定木はどの変数が使用されるかを気にしないからです。ただし、2つの相関変数の一方を削除しても、他の変数に同様の情報が含まれている場合、モデルの精度に大きな影響を与えないため、変数の重要性に影響する可能性があります。
library(tidyverse)
library(xgboost)
evaluate_model = function(dataset) {
print("Correlation matrix")
dataset %>% select(-cut, -color, -clarity, -price) %>% cor %>% print
print("running model")
diamond.model = xgboost(
data=dataset %>% select(-cut, -color, -clarity, -price) %>% as.matrix,
label=dataset$price > 400,
max.depth=15, nrounds=30, nthread=2, objective = "binary:logistic",
verbose=F
)
print("Importance matrix")
importance_matrix <- xgb.importance(model = diamond.model)
importance_matrix %>% print
xgb.plot.importance(importance_matrix)
}
> diamonds %>% head
carat cut color clarity depth table price x y z
0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
ダイヤモンドデータのモデルを評価する
利用可能なすべての数値変数(カラット、深さ、表、x、y、x)を使用して、価格が400を超えるかどうかを予測します
xは最も重要な変数であり、重要度ゲインスコアは0.375954であることに注意してください。
evaluate_model(diamonds)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.37595419 0.54788335 0.19607102
2: carat 0.19699839 0.18015576 0.04873442
3: depth 0.15358261 0.08780079 0.27767284
4: y 0.11645929 0.06527969 0.18813751
5: table 0.09447853 0.05037063 0.17151492
6: z 0.06252699 0.06850978 0.11786929
モデルをDiamondsで訓練し、r = 1の変数をxに追加します
ここで新しい列を追加しますが、xと完全に相関しているため、新しい情報は追加されません。
この新しい変数は出力に存在しないことに注意してください。xgboostは、計算を開始する前に完全に相関した変数を自動的に削除するようです。xの重要性の向上は同じで、0.3759です。
diamonds_xx = diamonds %>%
mutate(xx = x + runif(1, -1, 1))
evaluate_model(diamonds_xx)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
xx 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
xx
carat 0.97509423
depth -0.02528925
table 0.19534428
x 1.00000000
y 0.97470148
z 0.97077180
xx 1.00000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.37595419 0.54788335 0.19607102
2: carat 0.19699839 0.18015576 0.04873442
3: depth 0.15358261 0.08780079 0.27767284
4: y 0.11645929 0.06527969 0.18813751
5: table 0.09447853 0.05037063 0.17151492
6: z 0.06252699 0.06850978 0.11786929
ダイヤモンドでトレーニングされたモデル、x + yの列を追加
新しい列xy = x + yを追加します。これは、xとyの両方に部分的に相関しています。
xとyの重要性がわずかに低下し、xが0.3759から0.3592に、yが0.116から0.079になっていることに注意してください。
diamonds_xy = diamonds %>%
mutate(xy=x+y)
evaluate_model(diamonds_xy)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
xy 0.96945349 -0.02750770 0.1907100 0.99354016 0.99376929 0.96744200
xy
carat 0.9694535
depth -0.0275077
table 0.1907100
x 0.9935402
y 0.9937693
z 0.9674420
xy 1.0000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.35927767 0.52924339 0.15952849
2: carat 0.17881931 0.18472506 0.04793713
3: depth 0.14353540 0.07482622 0.24990177
4: table 0.09202059 0.04714548 0.16267191
5: xy 0.08203819 0.04706267 0.13555992
6: y 0.07956856 0.05284980 0.13595285
7: z 0.06474029 0.06414738 0.10844794
冗長データを追加して修正されたダイヤモンドデータでトレーニングされたモデル
x(r = 0.4、0.5、0.6)に相関する3つの新しい列を追加し、何が起こるかを確認します。
xの重要性が低下し、0.3759から0.279に低下することに注意してください。
#' given a vector of values (e.g. diamonds$x), calculate three new vectors correlated to it
#'
#' Source: https://stat.ethz.ch/pipermail/r-help/2007-April/128938.html
calculate_correlated_vars = function(x1) {
# create the initial x variable
#x1 <- diamonds$x
# x2, x3, and x4 in a matrix, these will be modified to meet the criteria
x234 <- scale(matrix( rnorm(nrow(diamonds) * 3), ncol=3 ))
# put all into 1 matrix for simplicity
x1234 <- cbind(scale(x1),x234)
# find the current correlation matrix
c1 <- var(x1234)
# cholesky decomposition to get independence
chol1 <- solve(chol(c1))
newx <- x1234 %*% chol1
# check that we have independence and x1 unchanged
zapsmall(cor(newx))
all.equal( x1234[,1], newx[,1] )
# create new correlation structure (zeros can be replaced with other r vals)
newc <- matrix(
c(1 , 0.4, 0.5, 0.6,
0.4, 1 , 0 , 0 ,
0.5, 0 , 1 , 0 ,
0.6, 0 , 0 , 1 ), ncol=4 )
# check that it is positive definite
eigen(newc)
chol2 <- chol(newc)
finalx <- newx %*% chol2 * sd(x1) + mean(x1)
# verify success
mean(x1)
colMeans(finalx)
sd(x1)
apply(finalx, 2, sd)
zapsmall(cor(finalx))
#pairs(finalx)
all.equal(x1, finalx[,1])
finalx
}
finalx = calculate_correlated_vars(diamonds$x)
diamonds_cor = diamonds
diamonds_cor$x5 = finalx[,2]
diamonds_cor$x6 = finalx[,3]
diamonds_cor$x7 = finalx[,4]
evaluate_model(diamonds_cor)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.028224314 0.18161755 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.000000000 -0.29577852 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.295778522 1.00000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.025289247 0.19534428 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.029340671 0.18376015 0.97470148 1.00000000 0.95200572
z 0.95338738 0.094923882 0.15092869 0.97077180 0.95200572 1.00000000
x5 0.39031255 -0.007507604 0.07338484 0.40000000 0.38959178 0.38734145
x6 0.48879000 -0.016481580 0.09931705 0.50000000 0.48835896 0.48487442
x7 0.58412252 -0.013772440 0.11822089 0.60000000 0.58408881 0.58297414
x5 x6 x7
carat 3.903125e-01 4.887900e-01 5.841225e-01
depth -7.507604e-03 -1.648158e-02 -1.377244e-02
table 7.338484e-02 9.931705e-02 1.182209e-01
x 4.000000e-01 5.000000e-01 6.000000e-01
y 3.895918e-01 4.883590e-01 5.840888e-01
z 3.873415e-01 4.848744e-01 5.829741e-01
x5 1.000000e+00 5.925447e-17 8.529781e-17
x6 5.925447e-17 1.000000e+00 6.683397e-17
x7 8.529781e-17 6.683397e-17 1.000000e+00
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.27947762 0.51343709 0.09748172
2: carat 0.13556427 0.17401365 0.02680747
3: x5 0.13369515 0.05267688 0.18155971
4: x6 0.12968400 0.04804315 0.19821284
5: x7 0.10600238 0.05148826 0.16450041
6: depth 0.07087679 0.04485760 0.11251015
7: y 0.06050565 0.03896716 0.08245329
8: table 0.04577057 0.03135677 0.07554833
9: z 0.03842355 0.04515944 0.06092608