Echo State NetworksやLiquid State Machinesなどのリザーバーコンピューティングテクニックについて読んでいます。どちらの方法も、ランダムに接続された(または接続されていない)スパイキングニューロンの母集団に入力を供給することと、出力を生成する比較的単純な読み出しアルゴリズム(線形回帰など)を含みます。ニューロンの母集団の重みは、固定されているか、STDPのようなヘブライアンのようなローカルアクティビティルールによってトレーニングされています。
これらの手法は、重要な時間コンポーネントを持つ多次元入力をモデル化するときにうまく機能します。ただし、スパイクニューロンの膜電位の計算には微分方程式の積分が含まれ、計算コストが高くなる可能性があります。
リザーバーコンピューティングテクニックの追加の計算の複雑さの方が、予測または分類タスクのゲインよりも優れている例はありますか?
たとえば、RNN、ANN、SVM、DNN、CNN、またはその他のアルゴリズムに基づいて、比較的複雑なアーキテクチャよりもSNN技術が優れているケースはありますか?