ウィキペディアによると:
シャノンのエントロピーは、決定された(または予測可能な)メッセージの部分とは対照的に、メッセージに含まれる情報を測定します。後者の例には、言語構造の冗長性や、文字や単語のペア、トリプレットなどの出現頻度に関する統計的特性が含まれます。
エントロピーは、メッセージに含まれる情報の量の尺度です。エントロピーコーダーは、そのようなメッセージを表現するために必要な最小ビット数(エントロピー)に可逆圧縮するために使用されます。私にとって、これは、メッセージを可能な限り損失なく圧縮するために必要なのは完全なエントロピーエンコーダーだけであるように見えます。
ただし、多くの圧縮アルゴリズムは、エントロピーコーディングの前にステップを使用して、メッセージのエントロピーを減らすと考えられています。
ドイツのウィキペディアによると
Entropiekodierer werdenhäufigmit anderen Kodierern kombiniert。Dabei dienen vorgeschaltete Verfahren dazu、die Entropie der Daten zu verringern。
英語で:
エントロピーコーダーは他のエンコーダーと頻繁に組み合わされます。前の手順は、データのエントロピーを減らすのに役立ちます。
つまり、bzip2はエントロピーコーディング(この場合はハフマンコーディング)を適用する前に、Burrows-Wheeler-Transformに続いてMove-To-Front-Transformを使用します。
これらの手順は、メッセージのエントロピーを実際に減らしますか?これは、メッセージに含まれる情報の量を減らすことを意味しますか?圧縮中に情報が失われ、無損失の圧縮解除が妨げられることになるため、これは私には矛盾しているようです。または、メッセージを変換してエントロピーコーディングアルゴリズムの効率を向上させるだけですか?または、エントロピーはメッセージ内の情報量に直接対応していませんか?