重なり合う円の境界線


21

平面上の複数のポイントの座標と、各ポイントを囲む円の半径を指定して、円と円が交わるエッジを表すポリゴンを描画します。まっすぐなエッジは常に円と円の交差線に沿って落ちますが、これらの線の全長に沿っていない場合があります。

パーmbomb007さんの提案、2D石鹸の泡の挙動を想像してみてください。それは技術的に間違っています。シャボン玉は常にエネルギーを最小化するために120°の角度で交わるのに対し、これらの円はどの角度でも交わることがあります。

これは、定義された面積平面を除いたボロノイ図です。アンドレアスに感謝します。これは実際には、パワー図と呼ばれるボロノイ図の一般化です。

たとえば、2つのポイントと2つの半径を指定すると、出力は次のようになります。

ここに画像の説明を入力してください

別のポイントと半径を追加すると、出力は次のようになります。

ここに画像の説明を入力してください

入力

入力は自由に構成できます。次の入力で結果を投稿してください。

テスト1

  • x:10、y:10、r:10
  • x:25、y:12、r:8

テスト2

  • x:8、y:10、r:6
  • x:20、y:8、r:4
  • x:18、y:20、r:12

出力

出力はグラフィカルで、ポリゴンの境界線を含む必要がありますが、他には何も必要ありません。ポイントや交差点は、例のように表す必要はありません。

制約

  • 別の円の半径内にポイントは存在しません。
  • 標準のcodegolfルール。
  • 抜け穴のある回答は受け付けられませんが、気軽に楽しんでください。

1
タイトルを変更してバブルに言及する必要があります。これらは2Dバブルのように見えます。
mbomb007

3
ポイントのセットが与えられた平面のボロノイテッセレーションを求めています:en.wikipedia.org/wiki/Voronoi_diagram
アンドレアス

3
ボロノイ図では、「各シード[ポイント]に対して、他のどのシードよりもそのシードに近いすべてのポイントで構成される対応する領域があります」。図2の場合は明らかにそうではありません
。– DavidC

2
@Andreas DavidCが正しい、これはすべての円の半径が等しい場合にのみボロノイ図になります
-LLlAMnYP

3
この問題は、円のパワー図を求めています。
アンデルスカセオルグ16

回答:


18

Python 2、473 355バイト

L=input()
m=min
a,b,c,d=eval('m(%s-r for u,v,r in L),'*4%('u','v','-u','-v'))
e=(-c-a)/499.
H=lambda x,y:x*x+y*y
I=500
J=int(2-(d+b)/e)
print'P2',I,J,255
i=I*J
P=lambda(u,v,r):H(c+i%I*e+u,b+i/I*e-v)-r*r
while i:i-=1;p,k=m((P(k)/[1,k[2]][P(k)>0],k)for k in L);u,v,r=k;print int(255*m(1,[m([-p/r]+[(P(l)-p)/H(u-l[0],v-l[1])**.5for l in L-{k}]),p][p>0]/2/e))

これは一連の円を(x,y,r)標準入力のタプルとして読み取り、PGM形式の画像を標準出力に出力します。おおよそ、各ピクセルでダイアグラムの距離関数を計算し、距離に比例して1ピクセル未満の各ピクセルをシェーディングすることで機能します。

{(10,10,10),(25,12,8)}

出力1

{(8,10,6),(20,8,4),(18,20,12)}

出力2

{(6, 63, 4), (16, 88, 9), (64, 94, 11), (97, 96, 3), (23, 32, 13), (54, 14, 7), (41, 81, 3), (7, 7, 4), (77, 18, 8), (98, 55, 4), (2, 56, 7), (62, 18, 5), (13, 74, 2), (33, 56, 12), (49, 48, 4), (6, 76, 2), (82, 70, 9), (21, 71, 2), (27, 5, 10), (3, 32, 6), (70, 62, 6), (74, 46, 4), (21, 60, 7), (18, 47, 7), (94, 2, 4), (39, 97, 7), (62, 63, 2), (87, 29, 8), (19, 17, 4), (61, 23, 2), (73, 1, 8), (40, 17, 13), (99, 41, 4), (81, 57, 7), (1, 68, 5), (38, 3, 4), (46, 36, 9), (4, 39, 2), (73, 77, 3), (93, 19, 10), (67, 42, 3), (96, 65, 2), (2, 16, 3), (28, 92, 3), (54, 58, 2), (39, 86, 5), (84, 82, 5), (79, 43, 4), (5, 47, 1), (34, 41, 8), (65, 5, 2), (9, 44, 3), (53, 3, 6), (1, 12, 1), (81, 95, 7), (74, 31, 2), (63, 61, 1), (35, 72, 1), (44, 71, 2), (57, 35, 5), (46, 65, 6), (57, 45, 4), (93, 94, 1), (99, 81, 13), (13, 58, 4), (68, 32, 6), (11, 2, 6), (52, 98, 7), (51, 25, 5), (84, 2, 2), (44, 92, 3), (23, 72, 2), (32, 99, 7), (13, 19, 3), (97, 29, 8), (58, 80, 3), (67, 82, 5), (59, 60, 3), (86, 87, 5), (29, 73, 2), (5, 93, 4), (42, 74, 1), (75, 85, 8), (91, 53, 5), (23, 82, 4), (19, 97, 8), (51, 88, 3), (67, 12, 6), (60, 53, 1), (66, 72, 2), (57, 64, 2), (66, 49, 2), (44, 0, 4), (11, 69, 1), (93, 60, 5), (56, 50, 3), (19, 68, 3), (64, 75, 3), (6, 17, 2), (82, 5, 2)}

出力3

ここでは、距離関数を32で割って表示しています。

{(7, 9, 7), (1, 3, 2), (4, 0, 4), (9, 2, 4), (0, 8, 5)}

距離関数のデモ


1
トップで保存:exec"%s=m%s(%s for u,v,r in L);"*4%('a','in','u-r','b','ax','v-r','c','in','u+r','d','ax','v+r')
マルティセン

9

C#〜2746

これはC#のソリューションです。おそらく最適とは言えませんが、とにかくC#はこれに勝つことはありません。自分にできることを証明したかっただけです。

xyrの順序でスペースで区切られた値を指定することにより、コマンドラインを介して入力します。出力は、実行ディレクトリ内のファイル「l.bmp」です。

プログラムは、あらゆる量のサークルを受け入れます。

テスト1:10 10 10 25 12 8

テスト2:8 10 6 20 8 4 18 20 12

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;

class Program
{
    static void Main(params string[] args) => new Program().run(args);

    class Circle
    {
        public PointF P;
        public float R;
    }

    class Line
    {
        public PointF S;
        public PointF E;
        public Circle C1;
        public Circle C2;
        public Line(Circle c1, Circle c2, PointF s, PointF e)
        {
            S = s;
            E = e;
            C1 = c1;
            C2 = c2;
        }
    }


    List<Line> lines = new List<Line>();
    List<Circle> circles = new List<Circle>();

    void run(string[] args)
    {
        for (int i = 0; i < args.Length; i += 3)
            addcircle(args[i], args[i + 1], args[i + 2]);
        circles.Sort((c1, c2) => c1.P.X.CompareTo(c2.P.X));


        int mx = (int)circles.Max(c => c.P.X + c.R) + 1;
        int my = (int)circles.Max(c => c.P.Y + c.R) + 1;



        for (int i = 0; i < circles.Count; i++)
            for (int j = i + 1; j < circles.Count; j++)
            {
                var c1 = circles[i];
                var c2 = circles[j];

                var d = dist(c1.P, c2.P);
                var a = 1 / d * sqrt((-d + c1.R - c2.R) * (-d - c1.R + c2.R) * (-d + c1.R + c2.R) * (d + c1.R + c2.R));
                var x = (sqr(d) - sqr(c2.R) + sqr(c1.R)) / (2 * d);

                var ap = angle(c1.P, c2.P);
                var la = rotate(c1.P, new PointF(c1.P.X + x, c1.P.Y + a / 2), ap);
                var lb = rotate(c1.P, new PointF(c1.P.X + x, c1.P.Y - a / 2), ap);
                var l = new Line(c1, c2, la, lb);
                lines.Add(l);
            }
        foreach (Line l in lines)
            foreach (Line lo in lines)
            {
                if (l == lo) continue;
                var intersection = intersect(l, lo);

                if (intersection != null && online(intersection.Value, l) && online(intersection.Value, lo))
                {
                    foreach (Circle circle in circles)
                    {
                        if (l.C1 == circle || l.C2 == circle)
                            continue;
                        if (dist(intersection.Value, circle.P) >= circle.R)
                            continue;

                        if (dist(l.E, circle.P) < circle.R)
                            l.E = intersection.Value;

                        if (dist(l.S, circle.P) < circle.R)
                            l.S = intersection.Value;
                    }
                }
            }


        using (Bitmap bmp = new Bitmap(mx, my))
        {
            using (Graphics g = Graphics.FromImage(bmp))
            {
                g.Clear(Color.White);
                foreach (var c in circles)
                    draw(g, c);


                for (int i = 0; i < circles.Count; i++)
                {
                    var c1 = circles[i];
                    var p = new PointF(c1.P.X + c1.R, c1.P.Y);
                    for (int j = 0; j < circles.Count; j++)
                    {
                        if (i == j) continue;
                        var c2 = circles[j];
                        for (var f = 0f; f <= 360f; f += 0.1f)
                        {
                            var pl = rotate(c1.P, p, f);
                            if (dist(pl, c2.P) <= c2.R)
                            {
                                g.DrawRectangle(new Pen(Color.White), (int)pl.X, (int)pl.Y, 1, 1);
                            }

                        }
                    }
                }


                foreach (var l in lines)
                    draw(g, l);

            }
            bmp.Save("t.bmp");
        }
    }

    private float dist(PointF p1, PointF p2) => sqrt(sqr(p1.X - p2.X) + sqr(p1.Y - p2.Y));


    bool online(PointF p, Line l)
    {
        var lx = l.S.X < l.E.X ? l.S.X : l.E.X;
        var hx = l.S.X > l.E.X ? l.S.X : l.E.X;
        var ly = l.S.Y < l.E.Y ? l.S.Y : l.E.Y;
        var hy = l.S.Y > l.E.Y ? l.S.Y : l.E.Y;

        return p.X >= lx && p.X <= hx && p.Y >= ly && p.Y <= hy;
    }

    static PointF? intersect(Line l1, Line l2)
    {
        //Line1
        float A1 = l1.E.Y - l1.S.Y;
        float B1 = l1.S.X - l1.E.X;
        float C1 = A1 * l1.S.X + B1 * l1.S.Y;

        //Line2
        float A2 = l2.E.Y - l2.S.Y;
        float B2 = l2.S.X - l2.E.X;
        float C2 = A2 * l2.S.X + B2 * l2.S.Y;

        float det = A1 * B2 - A2 * B1;
        if (det == 0)
        {
            return null; //parallel lines
        }
        float x = (B2 * C1 - B1 * C2) / det;
        float y = (A1 * C2 - A2 * C1) / det;
        return new PointF(x, y);
    }

    void addcircle(string x, string y, string r)
    {
        var SCALE = 20f;
        Circle c1 = new Circle
        {
            P = new PointF(float.Parse(x) * SCALE, float.Parse(y) * SCALE),
            R = float.Parse(r) * SCALE
        };
        circles.Add(c1);
    }

    void draw(Graphics g, Line l) => g.DrawLine(new Pen(Color.Red), l.S.X, l.S.Y, l.E.X, l.E.Y);

    PointF rotate(PointF o, PointF p, float angle)
    {
        var sa = (float)Math.Sin(angle);
        var ca = (float)Math.Cos(angle);
        var dx = p.X - o.X;
        var dy = p.Y - o.Y;

        return new PointF((ca * dx - sa * dy + o.X), (sa * dx + ca * dy + o.Y));
    }

    float angle(PointF p1, PointF p2)
    {
        var dx = p2.X - p1.X;
        if (dx == 0)
            return 0f;
        return (float)Math.Atan((p2.Y - p1.Y) / dx);
    }


    void draw(Graphics g, Circle c)
    {
        g.DrawEllipse(new Pen(Color.Blue),
                      c.P.X - c.R,
                      c.P.Y - c.R,
                      c.R * 2,
                      c.R * 2);
    }

    float sqr(float d) => d * d;
    float sqrt(float d) => (float)Math.Sqrt(d);
}

ここに含まれるすべての数学はこれに基づいてます。線の座標は、リンクの数式を使用して簡単に取得できました。しかし、それらは関係する2つのクリクルの中心の間の角度だけ回転する必要がありました。

線の長さを短くするために、それらの交点を計算しました。次に、その交点について、現在の線の終点が「線の親」ではなく、交点自体を含む円に達しているかどうかをチェックしました。その場合、線の終点は交差点の位置まで縮小されました。

円は簡単に描画でき、「不要な」部品は簡単に削除できなかったので、「ゴム」ソリューションを思い付きました。強引な種類のそれ。これは、各円の端に沿って歩いて、そのピクセルが別の円の範囲内にあるかどうかを確認することによって行われます。

最初は、指定した角度で​​円を描くだけで、うまく行かず、さらに多くのコード行が必要な、独自の円描画メソッドをロールバックしたかったのです。

あなたが気づいていないなら、これを説明するのに本当に苦労しています...英語は私の母が飛び交わないので、私はそのことを残念に思います。

ゴルフ

using System;using System.Collections.Generic;using System.Drawing;using System.Drawing.Imaging;using System.Linq;class P{static void Main(params string[]args)=>new P().R(args);class C{public PointF P;public float R;}class L{public PointF S;public PointF E;public C C1;public C C2;public L(C c1,C c2,PointF s,PointF e){S=s;E=e;C1=c1;C2=c2;}}List<L>_=new List<L>();List<C>c=new List<C>();void R(string[]args){for(int i=0;i<args.Length;i+=3)A(args[i],args[i+1],args[i+2]);c.Sort((c1,c2)=>c1.P.X.CompareTo(c2.P.X));int B=(int)c.Max(c=>c.P.X+c.R)+1;int e=(int)c.Max(c=>c.P.Y+c.R)+1;for(int i=0;i++<c.Count;)for(int j=i+1;j++<c.Count;){var f=c[i];var q=c[j];var d=D(f.P,q.P);var a=1/d*S((-d+f.R-q.R)*(-d-f.R+q.R)*(-d+f.R+q.R)*(d+f.R+q.R));var x=(F(d)-F(q.R)+F(f.R))/(2*d);var h=angle(f.P,q.P);var k=R(f.P,new PointF(f.P.X+x,f.P.Y+a/2),h);var m=R(f.P,new PointF(f.P.X+x,f.P.Y-a/2),h);var l=new L(f,q,k,m);_.Add(l);}foreach(L l in _)foreach(L o in _){if(l==o)continue;var n=I(l,o);if(n !=null && O(n.Value,l)&& O(n.Value,o)){foreach(C p in c){if(l.C1==p || l.C2==p)continue;if(D(n.Value,p.P)>=p.R)continue;if(D(l.E,p.P)<p.R)l.E=n.Value;if(D(l.S,p.P)<p.R)l.S=n.Value;}}}Bitmap r=new Bitmap(B,e);Graphics g=Graphics.FromImage(r);g.Clear(Color.White);foreach(var _ in c)D(g,_);for(int i=0;i++<c.Count;){var Q=c[i];var P=new PointF(Q.P.X+Q.R,Q.P.Y);for(int j=0;j++<c.Count;){if(i==j)continue;var G=c[j];for(var f=0f;f<=360f;f+=0.1f){var H=R(Q.P,P,f);if(D(H,G.P)<=G.R){g.DrawRectangle(new Pen(Color.White),(int)H.X,(int)H.Y,1,1);}}}}foreach(var l in _)D(g,l);r.Save("t.bmp");}float D(PointF p1,PointF p2)=>S(F(p1.X-p2.X)+F(p1.Y-p2.Y));bool O(PointF p,L l){var lx=l.S.X<l.E.X ? l.S.X : l.E.X;var hx=l.S.X>l.E.X ? l.S.X : l.E.X;var ly=l.S.Y<l.E.Y ? l.S.Y : l.E.Y;var hy=l.S.Y>l.E.Y ? l.S.Y : l.E.Y;return p.X>=lx && p.X<=hx && p.Y>=ly && p.Y<=hy;}static PointF? I(L l1,L l2){float a=l1.E.Y-l1.S.Y;float b=l1.S.X-l1.E.X;float d=a*l1.S.X+b*l1.S.Y;float e=l2.E.Y-l2.S.Y;float f=l2.S.X-l2.E.X;float g=e*l2.S.X+f*l2.S.Y;float h=a*f-e*b;if(h==0)return null;float x=(f*d-b*g)/h;float y=(a*g-e*d)/h;return new PointF(x,y);}void A(string x,string y,string r){var F=20f;C _=new C{P=new PointF(float.Parse(x)*F,float.Parse(y)*F),R=float.Parse(r)*F };c.Add(_);}void D(Graphics g,L l)=>g.DrawLine(new Pen(Color.Red),l.S.X,l.S.Y,l.E.X,l.E.Y);PointF R(PointF o,PointF p,float angle){var a=(float)Math.Sin(angle);var n=(float)Math.Cos(angle);var b=p.X-o.X;var x=p.Y-o.Y;return new PointF((n*b-a*x+o.X),(a*b+n*x+o.Y));}float angle(PointF p1,PointF p2){var a=p2.X-p1.X;if(a==0)return 0f;return(float)Math.Atan((p2.Y-p1.Y)/a);}void D(Graphics g,C c){g.DrawEllipse(new Pen(Color.Blue),c.P.X-c.R,c.P.Y-c.R,c.R*2,c.R*2);}float F(float d)=>d*d;float S(float d)=>(float)Math.Sqrt(d);}

結果1 結果2

より複雑な例(上の円は負のy値になります)

結果3 ゴムなし

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.