整数の複雑さ


29

あなたの仕事は、入力nで、1からnまでの各数値の最小式を順番に出力するプログラムを書くことです。バイト単位の最短プログラムが優先されます。

最小の式は、1を加算および乗算と組み合わせて、可能な限り少ない1を使用して、指定された数になります。たとえば、2323=((1+1+1)(1+1)+1)(1+1+1)+1+111のように表現されますが、これは最小限です。

要件:

  1. プログラムは、入力として正の自然数nを取る必要があります。
  2. 出力は次の形式である必要があります。 20 = ((1+1+1)(1+1+1)+1)(1+1)
  3. 出力には、などの不要な括弧がない場合があります8 = ((1+1)(1+1))(1+1)
  4. 乗算記号*はオプションです。
  5. スペースはオプションです。
  6. 与えられた値に対して可能なすべての方程式を出力する必要はありません。たとえば、出力する4=1+1+1+1か、選択するかを選択できます4=(1+1)(1+1)。両方を出力する必要はありません。
  7. 各言語の最短プログラム(バイト単位)が優先されます。
1 = 1
2 = 1 + 1
3 = 1 + 1 + 1
4 = 1 + 1 + 1 + 1
5 = 1 + 1 + 1 + 1 + 1
6 =(1 + 1 + 1)(1 + 1)
7 =(1 + 1 + 1)(1 + 1)+1
8 =(1 + 1 + 1 + 1)(1 + 1)
9 =(1 + 1 + 1)(1 + 1 + 1)
10 =(1 + 1 + 1)(1 + 1 + 1)+1
11 =(1 + 1 + 1)(1 + 1 + 1)+ 1 + 1
12 =(1 + 1 + 1)(1 + 1)(1 + 1)
13 =(1 + 1 + 1)(1 + 1)(1 + 1)+1
14 =((1 + 1 + 1)(1 + 1)+1)(1 + 1)
15 =(1 + 1 + 1 + 1 + 1)(1 + 1 + 1)
16 =(1 + 1 + 1 + 1)(1 + 1)(1 + 1)
17 =(1 + 1 + 1 + 1)(1 + 1)(1 + 1)+1
18 =(1 + 1 + 1)(1 + 1 + 1)(1 + 1)
19 =(1 + 1 + 1)(1 + 1 + 1)(1 + 1)+1
20 =((1 + 1 + 1)(1 + 1 + 1)+1)(1 + 1)

以下に、さらにいくつかのテストケースを示します(同じ数の1を持つ他の式も許可されることを思い出してください)

157=((1+1+1)(1+1)(1+1)+1)(1+1+1)(1+1)(1+1)+1

444=((1+1+1)(1+1+1)(1+1)(1+1)+1)(1+1+1)(1+1)(1+1)

1223=((1+1+1)(1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)(1+1+1+1+1)+1+1+1

15535=((((1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)((1+1+1)(1+1)+1)+1)(1+1+1)+1)(1+1+1)(1+1+1)+1

45197=((((1+1+1)(1+1)(1+1)(1+1)+1)(1+1+1+1+1)(1+1)+1)(1+1+1)(1+1)(1+1)+1)(1+1+1+1+1)(1+1+1)+1+1

がんばろう!-カメ🐢


1
1)箇条書き#6は終了しておらず(の出力例がありませんn=20)、2)最初に、方程式とは異なる整数の複雑さを出力する必要があると言いますが、最初の例を除くすべての例。
エレンディアスターマン

私はまだ明確ではありません。方程式を出力するだけですか?
-xnor

はい。整数の複雑さは出力されません。それも明確にします。間違いでごめんなさい。:(
The Turtle

おっと、要件リストで箇条書き#5を言うべきときに、箇条書き#6を言った。他の問題については、修正していただきありがとうございます。:)
El'endia Starman

回答:


10

Pyth、60バイト

LjWqeb\1b`()L?tbho/N\1++'tb"+1"m+y'/bdy'df!%bTr2b1VSQ++N\='N

デモンストレーション

オンラインコンパイラは、Pythの自動関数メモ化のおかげで、タイムアウトする前に1223に達する可能性があります。

1223=((1+1+1)(1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)(1+1+1+1+1)+1+1+1

略記では、

1223=(3^5+1)*5+3

これは再帰関数を使用します 'は、目的の出力を提供する可能性のあるすべての積と合計を計算し、各最終操作で最短の文字列を見つけて、1カウントで比較し、最初のものを返します。

ヘルパー関数を使用し、 yこの、括弧で囲む必要がある場合にのみ式を括弧で囲みます。

オフラインで、inputを使用してプログラムを実行していますが15535、ほぼ完了しています。結果は段階的に印刷されるため、進行状況を簡単に確認できます。

出力の最終行:

15535=((((1+1+1)(1+1+1)(1+1+1)(1+1+1)+1)((1+1+1)(1+1)+1)+1)(1+1+1)+1)(1+1+1)(1+1+1)+1

real    7m8.430s
user    7m7.158s
sys 0m0.945s

略記法では、

15535=(((3^4+1)*(3*2+1)+1)*3+1)*3^2+1

7

CJam、105の 102 98 96バイト

q~{)'=1$2,{:I{I1$-'+}%3/1>Imf'*+aImp!*+{)\{j}%\+}:F%{e_"+*"-:+}$0=}j2,{F)_'*={;{'(\')}%1}&*}jN}/

CJamインタープリターでオンラインで試す

試運転

オンラインインタプリタは、より大きなテストケースには遅すぎます。でも、Javaインタプリタで、より大きなテストケースがかかります長い時間をし、大量のメモリを必要とします。

$ time cjam integer-complexity.cjam <<< 157
1=1
2=1+1
3=1+1+1
4=1+1+1+1
5=1+1+1+1+1
6=(1+1)(1+1+1)
7=1+(1+1)(1+1+1)
8=(1+1)(1+1)(1+1)
9=(1+1+1)(1+1+1)
10=1+(1+1+1)(1+1+1)
11=1+1+(1+1+1)(1+1+1)
12=(1+1)(1+1)(1+1+1)
13=1+(1+1)(1+1)(1+1+1)
14=(1+1)(1+(1+1)(1+1+1))
15=(1+1+1)(1+1+1+1+1)
16=(1+1)(1+1)(1+1)(1+1)
17=1+(1+1)(1+1)(1+1)(1+1)
18=(1+1)(1+1+1)(1+1+1)
19=1+(1+1)(1+1+1)(1+1+1)
20=(1+1)(1+1)(1+1+1+1+1)
21=(1+1+1)(1+(1+1)(1+1+1))
22=1+(1+1+1)(1+(1+1)(1+1+1))
23=1+1+(1+1+1)(1+(1+1)(1+1+1))
24=(1+1)(1+1)(1+1)(1+1+1)
25=1+(1+1)(1+1)(1+1)(1+1+1)
26=(1+1)(1+(1+1)(1+1)(1+1+1))
27=(1+1+1)(1+1+1)(1+1+1)
28=1+(1+1+1)(1+1+1)(1+1+1)
29=1+1+(1+1+1)(1+1+1)(1+1+1)
30=(1+1)(1+1+1)(1+1+1+1+1)
31=1+(1+1)(1+1+1)(1+1+1+1+1)
32=(1+1)(1+1)(1+1)(1+1)(1+1)
33=1+(1+1)(1+1)(1+1)(1+1)(1+1)
34=(1+1)(1+(1+1)(1+1)(1+1)(1+1))
35=(1+1+1+1+1)(1+(1+1)(1+1+1))
36=(1+1)(1+1)(1+1+1)(1+1+1)
37=1+(1+1)(1+1)(1+1+1)(1+1+1)
38=(1+1)(1+(1+1)(1+1+1)(1+1+1))
39=(1+1+1)(1+(1+1)(1+1)(1+1+1))
40=(1+1)(1+1)(1+1)(1+1+1+1+1)
41=1+(1+1)(1+1)(1+1)(1+1+1+1+1)
42=(1+1)(1+1+1)(1+(1+1)(1+1+1))
43=1+(1+1)(1+1+1)(1+(1+1)(1+1+1))
44=(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
45=(1+1+1)(1+1+1)(1+1+1+1+1)
46=1+(1+1+1)(1+1+1)(1+1+1+1+1)
47=1+1+(1+1+1)(1+1+1)(1+1+1+1+1)
48=(1+1)(1+1)(1+1)(1+1)(1+1+1)
49=1+(1+1)(1+1)(1+1)(1+1)(1+1+1)
50=(1+1)(1+1+1+1+1)(1+1+1+1+1)
51=(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
52=(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
53=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
54=(1+1)(1+1+1)(1+1+1)(1+1+1)
55=1+(1+1)(1+1+1)(1+1+1)(1+1+1)
56=(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
57=(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
58=1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
59=1+1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
60=(1+1)(1+1)(1+1+1)(1+1+1+1+1)
61=1+(1+1)(1+1)(1+1+1)(1+1+1+1+1)
62=(1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
63=(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
64=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
65=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
66=(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
67=1+(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
68=(1+1)(1+1)(1+(1+1)(1+1)(1+1)(1+1))
69=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1)(1+1))
70=(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
71=1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
72=(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
73=1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
74=(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
75=(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
76=(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
77=1+(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
78=(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
79=1+(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
80=(1+1)(1+1)(1+1)(1+1)(1+1+1+1+1)
81=(1+1+1)(1+1+1)(1+1+1)(1+1+1)
82=1+(1+1+1)(1+1+1)(1+1+1)(1+1+1)
83=1+1+(1+1+1)(1+1+1)(1+1+1)(1+1+1)
84=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1))
85=1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1))
86=(1+1)(1+(1+1)(1+1+1)(1+(1+1)(1+1+1)))
87=(1+1+1)(1+1+(1+1+1)(1+1+1)(1+1+1))
88=(1+1)(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
89=1+(1+1)(1+1)(1+1)(1+1+(1+1+1)(1+1+1))
90=(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
91=1+(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
92=1+1+(1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
93=(1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
94=1+(1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
95=(1+1+1+1+1)(1+(1+1)(1+1+1)(1+1+1))
96=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1+1)
97=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1+1)
98=(1+1)(1+(1+1)(1+1+1))(1+(1+1)(1+1+1))
99=(1+1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
100=(1+1)(1+1)(1+1+1+1+1)(1+1+1+1+1)
101=1+(1+1)(1+1)(1+1+1+1+1)(1+1+1+1+1)
102=(1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
103=1+(1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
104=(1+1)(1+1)(1+1)(1+(1+1)(1+1)(1+1+1))
105=(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
106=1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
107=1+1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
108=(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
109=1+(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
110=1+1+(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)
111=(1+1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
112=(1+1)(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
113=1+(1+1)(1+1)(1+1)(1+1)(1+(1+1)(1+1+1))
114=(1+1)(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
115=1+(1+1)(1+1+1)(1+(1+1)(1+1+1)(1+1+1))
116=(1+1)(1+1)(1+1+(1+1+1)(1+1+1)(1+1+1))
117=(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
118=1+(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
119=(1+(1+1)(1+1+1))(1+(1+1)(1+1)(1+1)(1+1))
120=(1+1)(1+1)(1+1)(1+1+1)(1+1+1+1+1)
121=1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1+1+1)
122=(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1+1+1))
123=(1+1+1)(1+(1+1)(1+1)(1+1)(1+1+1+1+1))
124=(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
125=(1+1+1+1+1)(1+1+1+1+1)(1+1+1+1+1)
126=(1+1)(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
127=1+(1+1)(1+1+1)(1+1+1)(1+(1+1)(1+1+1))
128=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
129=1+(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)
130=(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1))
131=1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1))
132=(1+1)(1+1)(1+1+1)(1+1+(1+1+1)(1+1+1))
133=(1+(1+1)(1+1+1))(1+(1+1)(1+1+1)(1+1+1))
134=1+(1+(1+1)(1+1+1))(1+(1+1)(1+1+1)(1+1+1))
135=(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
136=1+(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
137=1+1+(1+1+1)(1+1+1)(1+1+1)(1+1+1+1+1)
138=(1+1)(1+1+1)(1+1+(1+1+1)(1+(1+1)(1+1+1)))
139=1+(1+1)(1+1+1)(1+1+(1+1+1)(1+(1+1)(1+1+1)))
140=(1+1)(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
141=1+(1+1)(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1))
142=(1+1)(1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1+1)))
143=(1+1+(1+1+1)(1+1+1))(1+(1+1)(1+1)(1+1+1))
144=(1+1)(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
145=1+(1+1)(1+1)(1+1)(1+1)(1+1+1)(1+1+1)
146=(1+1)(1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1))
147=(1+1+1)(1+(1+1)(1+1+1))(1+(1+1)(1+1+1))
148=(1+1)(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
149=1+(1+1)(1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
150=(1+1)(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
151=1+(1+1)(1+1+1)(1+1+1+1+1)(1+1+1+1+1)
152=(1+1)(1+1)(1+1)(1+(1+1)(1+1+1)(1+1+1))
153=(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
154=1+(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1))
155=(1+1+1+1+1)(1+(1+1)(1+1+1)(1+1+1+1+1))
156=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))
157=1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1))

real    0m3.896s
user    0m4.892s
sys     0m0.066s

十分な時間があれば、次のテストケース用にこれらのソリューションを作成します。

444=(1+1)(1+1)(1+1+1)(1+(1+1)(1+1)(1+1+1)(1+1+1))
1223=1+1+(1+1+1)(1+1+(1+1+1)(1+1+1))(1+(1+1)(1+1)(1+1+1)(1+1+1))

どのように機能しますか?
flawr

@flawr私はまだこれをもう少しゴルフしたいと思っています。終わったら、説明を追加します。
デニス

4

ジュリア、229バイト

n->(F=i->K[i]>0?E[i]:"("E[i]")";C=[1;3:n+1];K=0C;E=fill("1",n);for s=1:n for i=1:s÷2 (D=C[i]+C[s-i])<C[s]?(C[s]=D;E[s]=E[i]"+"E[s-i];K[s]=0):s%i>0||(D=C[i]+C[j=s÷i])<C[s]&&(C[s]=D;E[s]=F(i)F(j);K[s]=1)end;println("$s="E[s])end)

これは実際には非常に高速です。関数を割り当てて実行するf@time f(15535)、出力が得られます(最後の2行のみ)

15535=1+(1+1+1)(1+1+1)(1+(1+1+1)(1+(1+(1+1)(1+1+1))(1+(1+1+1)(1+1+1)(1+1+1)(1+1+1))))
32.211583 seconds (263.30 M allocations: 4.839 GB, 4.81% gc time)

そして、のために@time f(45197)それを与え、

45197=1+1+(1+1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1+1)(1+(1+1)(1+1+1+1+1)(1+(1+1)(1+1)(1+1)(1+1+1))))
289.749564 seconds (2.42 G allocations: 43.660 GB, 4.91% gc time)

それでは、コードは何をしているのでしょうか?シンプル- 数値Cの現在の1つを保持し、式が基本的に和であるか積であるかをブラケットで処理するために追跡するインジケーター配列であり、xpression自体を保持します。その方法を後処理に至る数の最小の表現のためのコード検索は、和または積のいずれかを探して、低い値の観点。製品の場合、2つのコンポーネントをチェックし、それらが合計である場合はそれらを囲む括弧を付けます。このチェックは、バイトを節約するためにfunction で実行されます(2つの要因のために2回実行する必要があるため)。CKEEs=1nsF

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.