セイロン/セイロン、49.86 40.95ポイント
3番目のバージョンでは、ジェネレーターと509バイトのコードにCeylon 1.2を使用しています。
import ceylon.language{S=String,I=Integer,e=expand}S q(I n)=>n==0then"0"else(n<0then"-"+p(-n,"-")else p(n,"+"));variable Map<[I,S],S>c=map{};S p(I n,S s){S v=c[[n,s]]else(n<8then s.join([1].repeat(n)))else(let(a="+-".replace(s,""))e(e{for(x in 2..8)let(l=(n^(1.0/x)).integer){for(r in l:2)if(r>1)let(w=r^x){if(w-n<n)"("+p(r,"+")+")^("+p(x,"+")+")"+(w<n then s+p(n-w,s)else(n<w then a+p(w-n,a)else""))}}}).reduce<S>((x,y)=>x.size<y.size then x else y))else"";c=[n,s]in c then c else map{[n,s]->v,*c};return v;}
35.22ポイントになりますが、Celyon 1.2は10月29日にしか公開されていないため、これをタイトル行に入れません。このサイズのCeylon 1.1でこのアルゴリズムを実装できるとは思いません。)詳細については、ここで2番目のバージョンについて説明します。(最初のバージョンは履歴で確認できます。正の数のみをサポートしていましたが、256バイトに収まりました。)
第二版
現在、2番目のバージョンは負の整数(および0)をサポートし、さらにを使用して少し短い出力を作成します-
。(このバージョンは実際に許可された長さを使用しており、最初の長さは512ではなく256バイト未満にとどまりました。)
String proof(Integer n) {
if (n == 0) { return "0"; }
if (n < 0) { return "-" + p(-n, "-"); }
return p(n, "+");
}
String p(Integer n, String sign) {
if (n < 9) {
return sign.join([1].repeat(n));
}
value anti = (sign == "+") then "-" else "+";
value root = ((n^0.5) + 0.5).integer;
return "(" + p(root, "+") + ")^(1+1)" +
( (root^2 < n) then sign + p(n - root^2, sign) else
((n < root^2) then anti + p(root^2 - n, anti) else ""));
}
コードの長さは487であるため、後でさらに最適化するためのスペースがまだあります。(空白や長い変数名の形で多くの予備もあります。)
得点:
Total positive: 42652
Average positive:42.652
Total negative: 43653
Average negative: 43.60939060939061
With bonus:39.24845154845155
Overall score: 40.95022577422577
いくつかのサンプル出力:
27: 21: (1+1+1+1+1)^(1+1)+1+1
28: 23: (1+1+1+1+1)^(1+1)+1+1+1
29: 25: (1+1+1+1+1)^(1+1)+1+1+1+1
30: 27: (1+1+1+1+1)^(1+1)+1+1+1+1+1
31: 29: (1+1+1+1+1+1)^(1+1)-1-1-1-1-1
32: 27: (1+1+1+1+1+1)^(1+1)-1-1-1-1
33: 25: (1+1+1+1+1+1)^(1+1)-1-1-1
34: 23: (1+1+1+1+1+1)^(1+1)-1-1
-27: 22: -(1+1+1+1+1)^(1+1)-1-1
-28: 24: -(1+1+1+1+1)^(1+1)-1-1-1
-29: 26: -(1+1+1+1+1)^(1+1)-1-1-1-1
-30: 28: -(1+1+1+1+1)^(1+1)-1-1-1-1-1
-31: 30: -(1+1+1+1+1+1)^(1+1)+1+1+1+1+1
-32: 28: -(1+1+1+1+1+1)^(1+1)+1+1+1+1
-33: 26: -(1+1+1+1+1+1)^(1+1)+1+1+1
-34: 24: -(1+1+1+1+1+1)^(1+1)+1+1
993: 65: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1+1)^(1+1)+1+1+1+1+1
994: 63: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1-1-1
995: 61: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1-1
996: 59: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1
997: 57: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1
998: 55: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1
999: 53: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)
1000: 55: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)+1
-993: 66: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1+1)^(1+1)-1-1-1-1-1
-994: 64: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1+1+1
-995: 62: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1+1
-996: 60: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1
-997: 58: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1
-998: 56: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1
-999: 54: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)
-1000: 56: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)-1
1: 1: 1
2: 3: 1+1
3: 5: 1+1+1
4: 7: 1+1+1+1
5: 9: 1+1+1+1+1
6: 11: 1+1+1+1+1+1
7: 13: 1+1+1+1+1+1+1
8: 15: 1+1+1+1+1+1+1+1
9: 13: (1+1+1)^(1+1)
10: 15: (1+1+1)^(1+1)+1
0: 1: 0
-1: 2: -1
-2: 4: -1-1
-3: 6: -1-1-1
-4: 8: -1-1-1-1
-5: 10: -1-1-1-1-1
-6: 12: -1-1-1-1-1-1
-7: 14: -1-1-1-1-1-1-1
-8: 16: -1-1-1-1-1-1-1-1
-9: 14: -(1+1+1)^(1+1)
-10: 16: -(1+1+1)^(1+1)-1
ご覧のとおり、負の値は常に1バイトです(先頭の -
は対応する正の値よりも)長くなっています。
基本的な考え方は以前のプログラムと同じです。ターゲット番号の近くに正方形を見つけ、その根と残りを再帰的に表します。しかし、ここで、正方形もターゲット数よりも大きくすることを許可します。これにより、残りが負になります。(+0.5
アルゴリズムを微調整するために別の定数に変更できますが、すでにここで最適値に到達したようです。0.4と0.6はどちらも悪い結果をもたらします。)
負の値を負にする(および正の値と同じ構造を持つ場合)ために、演算子sign
を再帰関数に渡しp
ます。"+"
つまりまたは"-"
です。ささいな場合(n <9)のジョイナーにも使用できます残りが正の場合は残り、負の場合は反対の符号を使用します。
このproof
関数は(0の特別な場合で)初期記号を処理し、p
関数は再帰を使用して実際の作業を行います。
Ceylon 1.2用の3番目のバージョン
import ceylon.language { S=String, I=Integer,e=expand }
// output a base-proof Ceylon expression for an integer
// (i.e. using only 0 and 1 as digits).
//
// Question: http://codegolf.stackexchange.com/q/58084/2338
// My Answer: http://codegolf.stackexchange.com/a/58122/2338
//
// The goal is to produce an expression as short as possible, with
// the code staying under 512 bytes in length.
//
// This approach is to represent a positive integer as a square
// of a positive integer plus some remainder (where the remainder
// can be negative), and for negative integers replace the + on the
// outer level by -.
S q(I n) =>
n == 0 then "0"
else (n < 0 then "-" + p(-n, "-")
else p(n, "+"));
// cache for values of p
variable Map<[I, S],S> c = map { };
// Transforms a positive number into a base-proof term, using
// the given sign for the summation on the outer level.
S p(I n, S s) {
S v =
// look into the cache
c[[n, s]] else (
// hard-code small numbers
n < 8 then s.join([1].repeat(n)))
else
// do the complicated stuff
(let (a = "+-".replace(s,""))
e(e {
for (x in 2..8) // try these exponents
let (l = (n ^ (1.0 / x)).integer) // \[ sqrt[exp]{n} \] in LaTeX
{ for (r in l:2) // lowerRoot, lowerRoot + 1
if (r > 1)
let (w = r ^ x)
{ if (w-n < n) // avoid recursion to larger or same number
// format the string as r^x + (n-w)
"(" + p(r, "+") + ")^(" + p(x, "+") + ")" +
(w < n then s + p(n - w, s)
else (n < w then a + p(w - n, a)
else ""))
} } })
// and now find the shortest formatted string
.reduce<S>((x, y) => x.size < y.size then x else y))
// this should never happen, but we can't tell the compiler
// that at least some of the iterables are non-empty due to the if clause.
else "";
// this builds a new cache in each step – quite wasteful,
// as this also happens when the value was found in the cache,
// but we don't have more characters remaining.
//// c = map { [n, s] -> v, *c };
///better way:
c = [n,s] in c then c else map{[n,s]->v, *c};
return v;
}
ゴルフバージョン(つまり、コメントと空白を削除)は、コードのちょうど509バイトで上部に投稿されます。
これは、2番目のバージョンと同じ基本原則を使用しますが、単なる2乗の代わりに、より高い数の累乗(2から8の指数を試行)を使用して、最短の結果を使用します。また、結果をキャッシュします。そうしないと、多くの再帰呼び出しを行うより大きな数値では許容できないほど遅くなります。
得点:
Total positive: 36622
Average positive: 36.622
Total negative: 37623
Average negative: 37.58541458541458
With bonus:33.826873126873124
Overall score: 35.22443656343656
真ん中の大きなインデントされた構造は、3つのネストされた反復可能な内包表記であり、内側の2つはlet式の中にあります。これらは、expand関数を2回使用してネスト解除され、reduce
関数はそれらの文字列の中で最も短いものを見つけます。
これを単一の理解で行えるようにするために、機能のリクエストを提出しました。
内包表記では、ルートr
、指数x
、および剰余(n-w
またはw-n
)から文字列を構築しています。
let
発現とmap
機能はセイロン1.2で新たに追加されました。map
で置き換えることができましたHashMap
(インポートにはより多くの文字が必要でしたが、新しいエントリごとに新しいマップを作成しないため、おそらくより高速になります)。のlet
ような表現は、次のような句let (w = r ^ x)
を使用することで置き換えることができます(そして、2つは必要ありませんでしたif
if(exists w = true then r ^ x)
expand
呼び出しも)が、これは少し長くなり、511の許容バイト内に収まりません。
ここで、上記で選択したものに対応するサンプル出力がありますが、実際に小さい数字を除くすべての出力は短くなっています。
27: 15: (1+1+1)^(1+1+1)
28: 17: (1+1+1)^(1+1+1)+1
29: 19: (1+1+1)^(1+1+1)+1+1
30: 21: (1+1)^(1+1+1+1+1)-1-1
31: 19: (1+1)^(1+1+1+1+1)-1
32: 17: (1+1)^(1+1+1+1+1)
33: 19: (1+1)^(1+1+1+1+1)+1
34: 21: (1+1)^(1+1+1+1+1)+1+1
-27: 16: -(1+1+1)^(1+1+1)
-28: 18: -(1+1+1)^(1+1+1)-1
-29: 20: -(1+1+1)^(1+1+1)-1-1
-30: 22: -(1+1)^(1+1+1+1+1)+1+1
-31: 20: -(1+1)^(1+1+1+1+1)+1
-32: 18: -(1+1)^(1+1+1+1+1)
-33: 20: -(1+1)^(1+1+1+1+1)-1
-34: 22: -(1+1)^(1+1+1+1+1)-1-1
993: 39: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1-1-1
994: 37: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1-1
995: 35: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1
996: 33: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1
997: 31: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1
998: 29: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1
999: 27: ((1+1+1)^(1+1)+1)^(1+1+1)-1
1000: 25: ((1+1+1)^(1+1)+1)^(1+1+1)
-993: 40: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1+1+1
-994: 38: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1+1
-995: 36: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1
-996: 34: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1
-997: 32: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1
-998: 30: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1
-999: 28: -((1+1+1)^(1+1)+1)^(1+1+1)+1
-1000: 26: -((1+1+1)^(1+1)+1)^(1+1+1)
1: 1: 1
2: 3: 1+1
3: 5: 1+1+1
4: 7: 1+1+1+1
5: 9: 1+1+1+1+1
6: 11: 1+1+1+1+1+1
7: 13: 1+1+1+1+1+1+1
8: 13: (1+1)^(1+1+1)
9: 13: (1+1+1)^(1+1)
10: 15: (1+1+1)^(1+1)+1
0: 1: 0
-1: 2: -1
-2: 4: -1-1
-3: 6: -1-1-1
-4: 8: -1-1-1-1
-5: 10: -1-1-1-1-1
-6: 12: -1-1-1-1-1-1
-7: 14: -1-1-1-1-1-1-1
-8: 14: -(1+1)^(1+1+1)
-9: 14: -(1+1+1)^(1+1)
-10: 16: -(1+1+1)^(1+1)-1
たとえば、1000 =(6 ^ 2-4)^ 2-5 ^ 2 + 1ではなく、1000 =(3 ^ 2 + 1)^ 3になりました。
0
または1
デフォルトで変数を使用できますか?