ダーウィン-C
とにかく、誰が戦略を必要としますか?穴居人のグループにお互いに行き、自然選択に任せましょう!
穴居人の原始的な頭脳には非常に単純なモデルを使用します。記憶はなく、相手と相手のスティックの鋭さだけを考慮します。これらは、有限次数のバイナリ多項式の変数として使用されます。各アクション(ブロック、シャープ、ポーク)には関連付けられた多項式があり、その結果により、このアクションを選択する相対的な確率が決まります。これでほとんどすべてです。ランダム係数から始めて、繰り返し最適化します。
ボット:
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
/* magic numbers */
#define SWORD_SHARPNESS 5
#define PROGRAM_DIM 4 /* polynomial order + 1 */
#define DEFAULT_FILENAME "players/Darwin/program"
typedef double real;
typedef real program[PROGRAM_DIM][PROGRAM_DIM];
typedef program caveman_brain[3];
typedef char action; /* S, B or P */
/* encodes a pair of actions */
#define ACTION_PAIR(a1, a2) (((int)(a1) << (sizeof(action) * 8)) | (a2))
real eval_program(const program p, double x, double y) {
    real v = 0;
    int i, j;
    for (i = 0; i < PROGRAM_DIM; ++i) {
        real w = 0;
        for (j = 0; j < PROGRAM_DIM; ++j)
            w = x * w + p[i][j];
        v = y * v + w;
    }
    if (v < 0)
        v = 0;
    return v;
}
void read_program(FILE* f, program p) {
    int i, j;
    for (i = 0; i < PROGRAM_DIM; ++i) {
        for (j = 0; j < PROGRAM_DIM; ++j) {
            double v;
            fscanf(f, "%lg", &v);
            p[i][j] = v;
        }
    }
}
int blunt(int* s) {
    int temp = *s;
    if (temp)
        --*s;
    return temp;
}
void sharpen(int* s) { ++*s; }
/* takes two sharpness/action pairs and updates the sharpness accordingly.
 * returns negative value if first caveman wins, positive value if second
 * caveman wins and 0 otherwise. */
int act(int* s1, action a1, int* s2, action a2) {
    switch (ACTION_PAIR(a1, a2)) {
        case ACTION_PAIR('B', 'B'): return 0;
        case ACTION_PAIR('B', 'S'): sharpen(s2); return 0;
        case ACTION_PAIR('B', 'P'): return blunt(s2) >= SWORD_SHARPNESS ? 1 :
                                                                          0;
        case ACTION_PAIR('S', 'B'): sharpen(s1); return 0;
        case ACTION_PAIR('S', 'S'): sharpen(s1); sharpen(s2); return 0;
        case ACTION_PAIR('S', 'P'): sharpen(s1); return *s2 > 0 ? 1 : 0;
        case ACTION_PAIR('P', 'B'): return blunt(s1) >= SWORD_SHARPNESS ? -1 :
                                                                          0;
        case ACTION_PAIR('P', 'S'): sharpen(s2); return *s1 > 0 ? -1 : 0;
        case ACTION_PAIR('P', 'P'): {
            int t1 = blunt(s1), t2 = blunt(s2);
            if (t1 >= SWORD_SHARPNESS && t2 < SWORD_SHARPNESS)
                return -1;
            else if (t2 >= SWORD_SHARPNESS && t1 < SWORD_SHARPNESS)
                return 1;
            else
                return 0;
        }
    }
}
/* processes a pair of strings of actions */
int str_act(int* s1, const char* a1, int* s2, const char* a2) {
    for (; *a1 && *a2; ++a1, ++a2) {
        int winner = act(s1, *a1, s2, *a2);
        if (winner)
            return winner;
    }
    return 0;
}
double frandom() { return (double)rand() / RAND_MAX; }
/* chooses an action based on self and opponent's sharpness */
action choose_action(const caveman_brain b, int s1, int s2) {
    double v[3];
    double sum = 0;
    double r;
    int i;
    for (i = 0; i < 3; ++i) {
        v[i] = eval_program(b[i], s1, s2);
        sum += v[i];
    }
    r = frandom() * sum;
    if (r <= v[0])
        return 'B';
    else if (r <= v[0] + v[1])
        return 'S';
    else
        return 'P';
}
/* portable tick-count for random seed */
#ifdef _WIN32
#include <Windows.h>
unsigned int tick_count() { return GetTickCount(); }
#else
#include <sys/time.h>
unsigned int tick_count() {
    struct timeval t;
    gettimeofday(&t, NULL);
    return 1000 * t.tv_sec + t.tv_usec / 1000;
}
#endif
int main(int argc, const char* argv[]) {
    const char* filename = DEFAULT_FILENAME;
    const char *a1, *a2;
    FILE* f;
    caveman_brain b;
    int s1 = 0, s2 = 0;
    int i;
    srand(tick_count()); rand();
    a1 = argc > 1 ? argv[1] : "";
    if (*a1) {
        a2 = strchr(a1, ',');
        if (a2 == NULL) {
            printf("invalid input!\n");
            return 1;
        }
        ++a2;
    } else
        a2 = a1;
    if (argc > 2)
        filename = argv[2];
    f = fopen(filename, "r");
    if (f == NULL) {
        printf("failed to open `%s'\n", filename);
        return 1;
    }
    for (i = 0; i < 3; ++i)
        read_program(f, b[i]);
    fclose(f);
    str_act(&s1, a1, &s2, a2);
    printf("%c\n", choose_action(b, s1, s2));
    return 0;
}
でコンパイルしますgcc darwin.c -odarwin -w -O3。で実行します./darwin <history>。
ボットprogramは、players/Darwinディレクトリで指定されたファイルから係数を読み取ります(別のファイルを2番目のコマンドライン引数として指定できます)。このプログラムはうまくいくようです:
0.286736 0.381578 -0.128122 1.33933 
0.723126 0.380574 1.21659 -0.9734 
0.924371 0.998632 -0.0951554 0.744323 
-0.113888 -0.321772 -0.260496 -0.136341 
0.280292 -0.699782 -0.246245 1.27435 
-1.24563 -0.959822 -0.745656 0.0347998 
-0.917928 -0.384105 0.319008 -0.70434 
0.484375 0.802138 0.0967234 0.638466 
0.406679 0.597322 1.39409 0.902353 
-0.735946 0.742589 0.955567 0.643268 
-0.503946 0.446167 1.002 0.328205 
0.26037 0.113346 0.0517265 -0.223298 
として保存しplayers/Darwin/programます。
以下は、programボットが使用できるファイルを生成するプログラムです(program上記のファイルを使用する場合、コンパイルする必要はありません)。
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
/* magic numbers */
#define SWORD_SHARPNESS 5
#define MAX_TURN_COUNT 100
#define PROGRAM_DIM 4 /* polynomial order + 1 */
#define CAVEMAN_COUNT 500
#define GENERATION_COUNT 12
#define DUEL_COUNT 8
#define ERROR_BACKOFF 0.5
#define DEFAULT_FILENAME "players/Darwin/program"
typedef double real;
typedef real program[PROGRAM_DIM][PROGRAM_DIM];
typedef program caveman_brain[3];
typedef char action; /* S, B or P */
/* encodes a pair of actions */
#define ACTION_PAIR(a1, a2) (((int)(a1) << (sizeof(action) * 8)) | (a2))
real eval_program(const program p, double x, double y) {
    real v = 0;
    int i, j;
    for (i = 0; i < PROGRAM_DIM; ++i) {
        real w = 0;
        for (j = 0; j < PROGRAM_DIM; ++j)
            w = x * w + p[i][j];
        v = y * v + w;
    }
    if (v < 0)
        v = 0;
    return v;
}
void write_program(FILE* f, const program p) {
    int i, j;
    for (i = 0; i < PROGRAM_DIM; ++i) {
        for (j = 0; j < PROGRAM_DIM; ++j)
            fprintf(f, "%g ", p[i][j]);
        fprintf(f, "\n");
    }
    fprintf(f, "\n");
}
int blunt(int* s) {
    int temp = *s;
    if (temp)
        --*s;
    return temp;
}
void sharpen(int* s) { ++*s; }
/* takes two sharpness/action pairs and updates the sharpness accordingly.
 * returns negative value if first caveman wins, positive value if second
 * caveman wins and 0 otherwise. */
int act(int* s1, action a1, int* s2, action a2) {
    switch (ACTION_PAIR(a1, a2)) {
        case ACTION_PAIR('B', 'B'): return 0;
        case ACTION_PAIR('B', 'S'): sharpen(s2); return 0;
        case ACTION_PAIR('B', 'P'): return blunt(s2) >= SWORD_SHARPNESS ? 1 :
                                                                          0;
        case ACTION_PAIR('S', 'B'): sharpen(s1); return 0;
        case ACTION_PAIR('S', 'S'): sharpen(s1); sharpen(s2); return 0;
        case ACTION_PAIR('S', 'P'): sharpen(s1); return *s2 > 0 ? 1 : 0;
        case ACTION_PAIR('P', 'B'): return blunt(s1) >= SWORD_SHARPNESS ? -1 :
                                                                          0;
        case ACTION_PAIR('P', 'S'): sharpen(s2); return *s1 > 0 ? -1 : 0;
        case ACTION_PAIR('P', 'P'): {
            int t1 = blunt(s1), t2 = blunt(s2);
            if (t1 >= SWORD_SHARPNESS && t2 < SWORD_SHARPNESS)
                return -1;
            else if (t2 >= SWORD_SHARPNESS && t1 < SWORD_SHARPNESS)
                return 1;
            else
                return 0;
        }
    }
}
/* processes a pair of strings of actions */
int str_act(int* s1, const char* a1, int* s2, const char* a2) {
    for (; *a1 && *a2; ++a1, ++a2) {
        int winner = act(s1, *a1, s2, *a2);
        if (winner)
            return winner;
    }
    return 0;
}
double frandom() { return (double)rand() / RAND_MAX; }
double firandom() { return 2.0 * rand() / RAND_MAX - 1.0; }
/* chooses an action based on self and opponent's sharpness */
action choose_action(const caveman_brain b, int s1, int s2) {
    double v[3];
    double sum = 0;
    double r;
    int i;
    for (i = 0; i < 3; ++i) {
        v[i] = eval_program(b[i], s1, s2);
        sum += v[i];
    }
    r = frandom() * sum;
    if (r <= v[0])
        return 'B';
    else if (r <= v[0] + v[1])
        return 'S';
    else
        return 'P';
}
typedef struct {
    caveman_brain brain;
    int sharpness;
    int score;
} caveman;
void init_caveman(caveman* c, const caveman* m, double e) {
    int p, i, j;
    c->score = 0;
    for (p = 0; p < 3; ++p) {
        for (i = 0; i < PROGRAM_DIM; ++i) {
            for (j = 0; j < PROGRAM_DIM; ++j) {
                c->brain[p][i][j] = m->brain[p][i][j] + firandom() * e;
            }
        }
    }
}
int duel(caveman* c1, caveman* c2) {
    int winner;
    int turn;
    c1->sharpness = c2->sharpness = 0;
    for (turn = 0; turn < MAX_TURN_COUNT; ++turn) {
        winner = act(&c1->sharpness,
                     choose_action(c1->brain, c1->sharpness, c2->sharpness),
                     &c2->sharpness,
                     choose_action(c2->brain, c2->sharpness, c1->sharpness));
        if (winner)
            break;
    }
    if (winner < 0)
        ++c1->score;
    else if (winner > 0)
        ++c2->score;
    return winner;
}
/* portable tick-count for random seed */
#ifdef _WIN32
#include <Windows.h>
unsigned int tick_count() { return GetTickCount(); }
#else
#include <sys/time.h>
unsigned int tick_count() {
    struct timeval t;
    gettimeofday(&t, NULL);
    return 1000 * t.tv_sec + t.tv_usec / 1000;
}
#endif
int main(int argc, const char* argv[]) {
    const char* filename = DEFAULT_FILENAME;
    FILE* f;
    caveman* cavemen;
    caveman winner;
    int gen;
    double err = 1.0;
    int i;
    srand(tick_count()); rand();
    memset(&winner, 0, sizeof(caveman));
    if ((cavemen = (caveman*)malloc(sizeof(caveman) * CAVEMAN_COUNT)) == NULL) {
        printf("not enough memory!\n");
        return 1;
    }
    for (gen = 0; gen < GENERATION_COUNT; ++gen) {
        int i, j, k;
        const caveman* leader;
        printf("[Gen. %d / %d] ", gen + 1, GENERATION_COUNT);
        fflush(stdout);
        for (i = 0; i < CAVEMAN_COUNT; ++i)
            init_caveman(&cavemen[i], &winner, err);
        for (i = 0; i < CAVEMAN_COUNT; ++i) {
            for (j = i + 1; j < CAVEMAN_COUNT; ++j) {
                for (k = 0; k < DUEL_COUNT; ++k)
                    duel(&cavemen[i], &cavemen[j]);
            }
        }
        leader = cavemen;
        for (i = 1; i < CAVEMAN_COUNT; ++i) {
            if (cavemen[i].score > leader->score)
                leader = &cavemen[i];
        }
        printf("Caveman #%d wins with %d victories in %d duels\n",
               leader - cavemen + 1,
               leader->score, (CAVEMAN_COUNT - 1) * DUEL_COUNT);
        memcpy(&winner, leader, sizeof(caveman));
        err *= ERROR_BACKOFF;
    }
    free(cavemen);
    if (argc > 1)
        filename = argv[1];
    printf("Dumping brain to `%s'\n", filename);
    f = fopen(filename, "w");
    if (f == NULL) {
        printf("failed to open `%s'\n", filename);
        return 1;
    }
    for (i = 0; i < 3; ++i)
        write_program(f, winner.brain[i]);
    fclose(f);
    return 0;
}
でコンパイルしますgcc genprog.c -ogenprog -w -O3。で実行します./genprog [output-filename]。
ワトソン
勝利の穴居人のDNAとは何ですか?おそらく、このフェラには答えがあります:
# That's the actual logic. Initialization goes below.
def run():
    if his_sharpness[-10] - turn / 15 + 1 + turn % 3 - his_sharpness[-6] < 0:
        act(B=0, S=0, P=100) # 7.21% chance
    elif his_sharpness[-6] + 1 - his_sharpness[-2] < 0:
        act(B=0, S=0, P=100) # 4.15% chance
    elif his_history[-3] - my_history[-1] <= 0 and my_sharpness[-1] - turn / 10 <= 0:
        act(B=0, S=100, P=0) # 11.34% chance
    elif his_sharpness[-1] == 0:
        act(B=0, S=100, P=0) # 27.84% chance
    else:
        act(B=100, S=0, P=0) # 49.46% chance
# Boring stuff go here...
import sys, random
# Actions
block, sharpen, poke, idle = range(4)
# Converts textual history to internal format
def convert_history(textual_history):
    return ["BSP".index(action) for action in textual_history]
# Calculates sharpness after performing an action sequence
def calculate_sharpness(history):
    return history.count(sharpen) - history.count(poke)
# Returns a list containing the sharpness at the end of each turn
def sharpness_history(history):
    return [calculate_sharpness(history[:i + 1]) for i in range(len(history))]
# Acts based on the probability distribution (B%, S%, P%)
def act(B, S, P):
    r = random.random() * 100
    print "BSP"[(r >= B) + (r >= B + S)]
# Setup data
textual_history = sys.argv[1] if len(sys.argv) > 1 else ","
my_history, his_history = (convert_history(h) for h in textual_history.split(','))
my_sharpness, his_sharpness = (sharpness_history(h) for h in (my_history, his_history))
turn = len(my_history)
my_history, his_history = ([idle] * 16 + h for h in (my_history, his_history))
my_sharpness, his_sharpness = ([0] * 16 + s for s in (my_sharpness, his_sharpness))
# Make a move
run()
で実行: python Watson.py
ワトソンは遺伝的アルゴリズムの産物です。ダーウィンとは異なり、今回の遺伝データは実際のプログラムであり、小さなドメイン固有の言語(ここではPythonに翻訳されています)で記述されています。
単純なシーケンスが大きなプレーヤーを打ち負かす
この小さなファラは、特にリーダーに対して、驚くほど(あるいは、それほど驚くほどではないかもしれません)うまくいきます。
import sys
print "Simple Sequence Beats Big Players".split(' ')[
    len(sys.argv[1]) / 2 % 5 if len(sys.argv) > 1 else 0
]
で実行: python SSBBP.py