モナリザのパレットのアメリカンゴシック:ピクセルの再配置


377

ソースとパレットの2つのトゥルーカラーイメージが提供されます。それらは必ずしも同じ寸法を持っているわけではありませんが、それらの面積が同じであることが保証されています。つまり、同じピクセル数を持っています。

あなたの仕事は、パレットのピクセルのみを使用して、ソースの最も正確に見えるコピーを作成するアルゴリズムを作成することです。パレットの各ピクセルは、このコピーの一意の位置で1回だけ使用する必要があります。コピーは、ソースと同じサイズでなければなりません。

このPythonスクリプトを使用して、これらの制約が満たされていることを確認できます。

from PIL import Image
def check(palette, copy):
    palette = sorted(Image.open(palette).convert('RGB').getdata())
    copy = sorted(Image.open(copy).convert('RGB').getdata())
    print 'Success' if copy == palette else 'Failed'

check('palette.png', 'copy.png')

テスト用の写真をいくつか紹介します。彼らはすべて同じ面積を持っています。アルゴリズムは、アメリカンゴシックとモナリザだけでなく、面積が等しい任意の2つの画像に対して機能する必要があります。もちろん、出力を表示する必要があります。

ゴシックアメリカ モナリザ 星が輝く夜 悲鳴 川 虹

有名な絵画の画像についてウィキペディアに感謝します。

得点

これは人気のあるコンテストであるため、最も投票数の多い回答が勝ちます。しかし、私はこれで創造的になる方法がたくさんあると確信しています!

アニメーション

ミリノンは、ピクセルが自分自身を再配置するのを見るのはクールだと考えていました。私もそう思ったので、同じ色で作られた2つの画像を取り、それらの間の中間画像を描くこの Pythonスクリプトを書きました。更新:各ピクセルが必要な最小量だけ移動するように修正しました。もはやランダムではありません。

最初は、モナリザがアディツのアメリカンゴシックに変わることです。次はbitpwnerのAmerican Gothic(Mona Lisaから)がaditsuになりました。2つのバージョンがまったく同じカラーパレットを共有しているのは驚くべきことです。

モナリザからアメリカのゴシックアニメーション モナリザ製のアメリカンゴシックの2つのバージョン間でアニメーション化する

結果は本当に驚くべきものです。こちらがアディツの虹のモナリザです(詳細を表示するのが遅くなります)

虹球からモナリザへのアニメーション

この最後のアニメーションは、必ずしもコンテストに関連しているわけではありません。スクリプトを使用して画像を90度回転したときに何が起こるかを示しています。

ツリー回転アニメーション


22
、あなたはそれを権利を与える検討すると良いかもしれませんあなたの質問にヒットを増やすには、「アメリカン・ゴシックは、モナリザのパレットに:ピクセルを並べ替え」
DavidC

14
こんにちは、私はあなたにこの元々の挑戦をお祝いしたいだけです!とても爽やかで面白い。
bolov 14

6
これが[code-golf]ではないことを嬉しく思います。
明唐

13
このページにアクセスするたびに、モバイルデータの制限がひどく燃えてしまいます。
ベクトル化された14

回答:


159

Java-プログレッシブランダム変換を使用したGUI

私はたくさんのものを試しましたが、そのうちのいくつかは非常に複雑でしたが、ついにこの比較的単純なコードに戻りました:

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Random;

import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.Timer;

@SuppressWarnings("serial")
public class CopyColors extends JFrame {
    private static final String SOURCE = "spheres";
    private static final String PALETTE = "mona";
    private static final int COUNT = 10000;
    private static final int DELAY = 20;
    private static final int LUM_WEIGHT = 10;

    private static final double[] F = {0.114, 0.587, 0.299};
    private final BufferedImage source;
    protected final BufferedImage dest;
    private final int sw;
    private final int sh;
    private final int n;
    private final Random r = new Random();
    private final JLabel l;

    public CopyColors(final String sourceName, final String paletteName) throws IOException {
        super("CopyColors by aditsu");
        source = ImageIO.read(new File(sourceName + ".png"));
        final BufferedImage palette = ImageIO.read(new File(paletteName + ".png"));
        sw = source.getWidth();
        sh = source.getHeight();
        final int pw = palette.getWidth();
        final int ph = palette.getHeight();
        n = sw * sh;
        if (n != pw * ph) {
            throw new RuntimeException();
        }
        dest = new BufferedImage(sw, sh, BufferedImage.TYPE_INT_RGB);
        for (int i = 0; i < sh; ++i) {
            for (int j = 0; j < sw; ++j) {
                final int x = i * sw + j;
                dest.setRGB(j, i, palette.getRGB(x % pw, x / pw));
            }
        }
        l = new JLabel(new ImageIcon(dest));
        add(l);
        final JButton b = new JButton("Save");
        add(b, BorderLayout.SOUTH);
        b.addActionListener(new ActionListener() {
            @Override
            public void actionPerformed(final ActionEvent e) {
                try {
                    ImageIO.write(dest, "png", new File(sourceName + "-" + paletteName + ".png"));
                } catch (IOException ex) {
                    ex.printStackTrace();
                }
            }
        });
    }

    protected double dist(final int x, final int y) {
        double t = 0;
        double lx = 0;
        double ly = 0;
        for (int i = 0; i < 3; ++i) {
            final double xi = ((x >> (i * 8)) & 255) * F[i];
            final double yi = ((y >> (i * 8)) & 255) * F[i];
            final double d = xi - yi;
            t += d * d;
            lx += xi;
            ly += yi;
        }
        double l = lx - ly;
        return t + l * l * LUM_WEIGHT;
    }

    public void improve() {
        final int x = r.nextInt(n);
        final int y = r.nextInt(n);
        final int sx = source.getRGB(x % sw, x / sw);
        final int sy = source.getRGB(y % sw, y / sw);
        final int dx = dest.getRGB(x % sw, x / sw);
        final int dy = dest.getRGB(y % sw, y / sw);
        if (dist(sx, dx) + dist(sy, dy) > dist(sx, dy) + dist(sy, dx)) {
            dest.setRGB(x % sw, x / sw, dy);
            dest.setRGB(y % sw, y / sw, dx);
        }
    }

    public void update() {
        l.repaint();
    }

    public static void main(final String... args) throws IOException {
        final CopyColors x = new CopyColors(SOURCE, PALETTE);
        x.setSize(800, 600);
        x.setLocationRelativeTo(null);
        x.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        x.setVisible(true);
        new Timer(DELAY, new ActionListener() {
            @Override
            public void actionPerformed(final ActionEvent e) {
                for (int i = 0; i < COUNT; ++i) {
                    x.improve();
                }
                x.update();
            }
        }).start();
    }
}

関連するすべてのパラメーターは、クラスの先頭で定数として定義されます。

プログラムはまずパレット画像をソースの寸法にコピーし、次に2つのランダムなピクセルを繰り返し選択し、ソース画像に近づける場合はそれらを交換します。「近い」は、r、g、b成分(ルマ加重)の差と、ルマの重みを大きくした合計ルマ差を計算する色距離関数を使用して定義されます。

シェイプが形成されるのに数秒かかりますが、色が揃うのに少し時間がかかります。現在の画像はいつでも保存できます。通常、保存するまで約1〜3分待っていました。

結果:

他のいくつかの回答とは異なり、これらの画像はすべて(ファイル名以外の)まったく同じパラメーターを使用して生成されました。

アメリカンゴシックパレット

モナゴシック 悲鳴ゴシック

モナリザパレット

ゴシックモナ スクリームモナ spheres-mona

星空の夜パレット

モナナイト 叫び夜 球夜

スクリームパレット

ゴシックスクリーム モナスクリーム ナイトスクリーム spheres-scream

球体パレット

これは最も難しいテストであり、誰もがこのパレットで結果を投稿する必要があると思います。

ゴシック球 モナ球 悲鳴球

申し訳ありませんが、川の画像があまりおもしろくなかったため、掲載していません。

また、https://www.youtube.com/watch?v = _- w3cKL5teMにビデオを追加しました。プログラムの動作を示しています(リアルタイムではなく正確に似ています)。脚本。残念ながら、YouTubeのエンコード/圧縮により、ビデオの品質が著しく損なわれます。


2
@Quincunxそして、私もinvokeLaterを呼び出していません、私を撃ちます:pまた、ありがとう:)
aditsu 14

16
これまでのベストアンサー...
ユヴァルフィルム14

8
疑わしいときは、総当たりでそれを強制しますか?優れた解決策のように思えますが、このためのアニメーション、おそらくgifの代わりのビデオも見たいです。
リリエンタール14

3
アルゴリズムを完全にシミュレートしたアニーリングに少し拡張して、少し改善することができます。あなたがしていることはすでに非常に近いです(しかし、それは貪欲です)。距離を最小化する順列を見つけることは難しい最適化問題のように思われるため、この種のヒューリスティックは適切です。@Lilienthalこれは総当たり攻撃ではなく、実際に一般的に使用される最適化手法に近いものです。
ザボルクス14

3
このアルゴリズムは、圧倒的に最良の結果をもたらします。そしてそれはとても簡単です。これは私にとって明確な勝者になります。
レイフ14

118

Java

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class PixelRearranger {

    public static void main(String[] args) throws IOException {
        BufferedImage source = ImageIO.read(resource("American Gothic.png"));
        BufferedImage palette = ImageIO.read(resource("Mona Lisa.png"));
        BufferedImage result = rearrange(source, palette);
        ImageIO.write(result, "png", resource("result.png"));
        validate(palette, result);
    }

    public static class MInteger {
        int val;

        public MInteger(int i) {
            val = i;
        }
    }

    public static BufferedImage rearrange(BufferedImage source, BufferedImage palette) {
        BufferedImage result = new BufferedImage(source.getWidth(),
                source.getHeight(), BufferedImage.TYPE_INT_RGB);

        //This creates a list of points in the Source image.
        //Then, we shuffle it and will draw points in that order.
        List<Point> samples = getPoints(source.getWidth(), source.getHeight());
        System.out.println("gotPoints");

        //Create a list of colors in the palette.
        rgbList = getColors(palette);
        Collections.sort(rgbList, rgb);
        rbgList = new ArrayList<>(rgbList);
        Collections.sort(rbgList, rbg);
        grbList = new ArrayList<>(rgbList);
        Collections.sort(grbList, grb);
        gbrList = new ArrayList<>(rgbList);
        Collections.sort(gbrList, gbr);
        brgList = new ArrayList<>(rgbList);
        Collections.sort(brgList, brg);
        bgrList = new ArrayList<>(rgbList);
        Collections.sort(bgrList, bgr);

        while (!samples.isEmpty()) {
            Point currentPoint = samples.remove(0);
            int sourceAtPoint = source.getRGB(currentPoint.x, currentPoint.y);
            int bestColor = search(new MInteger(sourceAtPoint));
            result.setRGB(currentPoint.x, currentPoint.y, bestColor);
        }
        return result;
    }

    public static List<Point> getPoints(int width, int height) {
        HashSet<Point> points = new HashSet<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                points.add(new Point(x, y));
            }
        }
        List<Point> newList = new ArrayList<>();
        List<Point> corner1 = new LinkedList<>();
        List<Point> corner2 = new LinkedList<>();
        List<Point> corner3 = new LinkedList<>();
        List<Point> corner4 = new LinkedList<>();

        Point p1 = new Point(width / 3, height / 3);
        Point p2 = new Point(width * 2 / 3, height / 3);
        Point p3 = new Point(width / 3, height * 2 / 3);
        Point p4 = new Point(width * 2 / 3, height * 2 / 3);

        newList.add(p1);
        newList.add(p2);
        newList.add(p3);
        newList.add(p4);
        corner1.add(p1);
        corner2.add(p2);
        corner3.add(p3);
        corner4.add(p4);
        points.remove(p1);
        points.remove(p2);
        points.remove(p3);
        points.remove(p4);

        long seed = System.currentTimeMillis();
        Random c1Random = new Random(seed += 179426549); //The prime number pushes the first numbers apart
        Random c2Random = new Random(seed += 179426549); //Or at least I think it does.
        Random c3Random = new Random(seed += 179426549);
        Random c4Random = new Random(seed += 179426549);

        Dir NW = Dir.NW;
        Dir N = Dir.N;
        Dir NE = Dir.NE;
        Dir W = Dir.W;
        Dir E = Dir.E;
        Dir SW = Dir.SW;
        Dir S = Dir.S;
        Dir SE = Dir.SE;
        while (!points.isEmpty()) {
            putPoints(newList, corner1, c1Random, points, NW, N, NE, W, E, SW, S, SE);
            putPoints(newList, corner2, c2Random, points, NE, N, NW, E, W, SE, S, SW);
            putPoints(newList, corner3, c3Random, points, SW, S, SE, W, E, NW, N, NE);
            putPoints(newList, corner4, c4Random, points, SE, S, SW, E, W, NE, N, NW);
        }
        return newList;
    }

    public static enum Dir {
        NW(-1, -1), N(0, -1), NE(1, -1), W(-1, 0), E(1, 0), SW(-1, 1), S(0, 1), SE(1, 1);
        final int dx, dy;

        private Dir(int dx, int dy) {
            this.dx = dx;
            this.dy = dy;
        }

        public Point add(Point p) {
            return new Point(p.x + dx, p.y + dy);
        }
    }

    public static void putPoints(List<Point> newList, List<Point> listToAddTo, Random rand,
                                 HashSet<Point> points, Dir... adj) {
        List<Point> newPoints = new LinkedList<>();
        for (Iterator<Point> iter = listToAddTo.iterator(); iter.hasNext();) {
            Point p = iter.next();
            Point pul = adj[0].add(p);
            Point pu = adj[1].add(p);
            Point pur = adj[2].add(p);
            Point pl = adj[3].add(p);
            Point pr = adj[4].add(p);
            Point pbl = adj[5].add(p);
            Point pb = adj[6].add(p);
            Point pbr = adj[7].add(p);
            int allChosen = 0;
            if (points.contains(pul)) {
                if (rand.nextInt(5) == 0) {
                    allChosen++;
                    newPoints.add(pul);
                    newList.add(pul);
                    points.remove(pul);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pu)) {
                if (rand.nextInt(5) == 0) {
                    allChosen++;
                    newPoints.add(pu);
                    newList.add(pu);
                    points.remove(pu);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pur)) {
                if (rand.nextInt(3) == 0) {
                    allChosen++;
                    newPoints.add(pur);
                    newList.add(pur);
                    points.remove(pur);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pl)) {
                if (rand.nextInt(5) == 0) {
                    allChosen++;
                    newPoints.add(pl);
                    newList.add(pl);
                    points.remove(pl);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pr)) {
                if (rand.nextInt(2) == 0) {
                    allChosen++;
                    newPoints.add(pr);
                    newList.add(pr);
                    points.remove(pr);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pbl)) {
                if (rand.nextInt(5) == 0) {
                    allChosen++;
                    newPoints.add(pbl);
                    newList.add(pbl);
                    points.remove(pbl);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pb)) {
                if (rand.nextInt(3) == 0) {
                    allChosen++;
                    newPoints.add(pb);
                    newList.add(pb);
                    points.remove(pb);
                }
            } else {
                allChosen++;
            }
            if (points.contains(pbr)) {
                newPoints.add(pbr);
                newList.add(pbr);
                points.remove(pbr);
            }
            if (allChosen == 7) {
                iter.remove();
            }
        }
        listToAddTo.addAll(newPoints);
    }

    public static List<MInteger> getColors(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<MInteger> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(new MInteger(img.getRGB(x, y)));
            }
        }
        return colors;
    }

    public static int search(MInteger color) {
        int rgbIndex = binarySearch(rgbList, color, rgb);
        int rbgIndex = binarySearch(rbgList, color, rbg);
        int grbIndex = binarySearch(grbList, color, grb);
        int gbrIndex = binarySearch(gbrList, color, gbr);
        int brgIndex = binarySearch(brgList, color, brg);
        int bgrIndex = binarySearch(bgrList, color, bgr);

        double distRgb = dist(rgbList.get(rgbIndex), color);
        double distRbg = dist(rbgList.get(rbgIndex), color);
        double distGrb = dist(grbList.get(grbIndex), color);
        double distGbr = dist(gbrList.get(gbrIndex), color);
        double distBrg = dist(brgList.get(brgIndex), color);
        double distBgr = dist(bgrList.get(bgrIndex), color);

        double minDist = Math.min(Math.min(Math.min(Math.min(Math.min(
                distRgb, distRbg), distGrb), distGbr), distBrg), distBgr);

        MInteger ans;
        if (minDist == distRgb) {
            ans = rgbList.get(rgbIndex);
        } else if (minDist == distRbg) {
            ans = rbgList.get(rbgIndex);
        } else if (minDist == distGrb) {
            ans = grbList.get(grbIndex);
        } else if (minDist == distGbr) {
            ans = grbList.get(grbIndex);
        } else if (minDist == distBrg) {
            ans = grbList.get(rgbIndex);
        } else {
            ans = grbList.get(grbIndex);
        }
        rgbList.remove(ans);
        rbgList.remove(ans);
        grbList.remove(ans);
        gbrList.remove(ans);
        brgList.remove(ans);
        bgrList.remove(ans);
        return ans.val;
    }

    public static int binarySearch(List<MInteger> list, MInteger val, Comparator<MInteger> cmp){
        int index = Collections.binarySearch(list, val, cmp);
        if (index < 0) {
            index = ~index;
            if (index >= list.size()) {
                index = list.size() - 1;
            }
        }
        return index;
    }

    public static double dist(MInteger color1, MInteger color2) {
        int c1 = color1.val;
        int r1 = (c1 & 0xFF0000) >> 16;
        int g1 = (c1 & 0x00FF00) >> 8;
        int b1 = (c1 & 0x0000FF);

        int c2 = color2.val;
        int r2 = (c2 & 0xFF0000) >> 16;
        int g2 = (c2 & 0x00FF00) >> 8;
        int b2 = (c2 & 0x0000FF);

        int dr = r1 - r2;
        int dg = g1 - g2;
        int db = b1 - b2;
        return Math.sqrt(dr * dr + dg * dg + db * db);
    }

    //This method is here solely for my ease of use (I put the files under <Project Name>/Resources/ )
    public static File resource(String fileName) {
        return new File(System.getProperty("user.dir") + "/Resources/" + fileName);
    }

    static List<MInteger> rgbList;
    static List<MInteger> rbgList;
    static List<MInteger> grbList;
    static List<MInteger> gbrList;
    static List<MInteger> brgList;
    static List<MInteger> bgrList;
    static Comparator<MInteger> rgb = (color1, color2) -> color1.val - color2.val;
    static Comparator<MInteger> rbg = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000)) | ((c1 & 0x00FF00) >> 8) | ((c1 & 0x0000FF) << 8);
        c2 = ((c2 & 0xFF0000)) | ((c2 & 0x00FF00) >> 8) | ((c2 & 0x0000FF) << 8);
        return c1 - c2;
    };
    static Comparator<MInteger> grb = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000) >> 8) | ((c1 & 0x00FF00) << 8) | ((c1 & 0x0000FF));
        c2 = ((c2 & 0xFF0000) >> 8) | ((c2 & 0x00FF00) << 8) | ((c2 & 0x0000FF));
        return c1 - c2;
    };

    static Comparator<MInteger> gbr = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000) >> 16) | ((c1 & 0x00FF00) << 8) | ((c1 & 0x0000FF) << 8);
        c2 = ((c2 & 0xFF0000) >> 16) | ((c2 & 0x00FF00) << 8) | ((c2 & 0x0000FF) << 8);
        return c1 - c2;
    };

    static Comparator<MInteger> brg = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000) >> 8) | ((c1 & 0x00FF00) >> 8) | ((c1 & 0x0000FF) << 16);
        c2 = ((c2 & 0xFF0000) >> 8) | ((c2 & 0x00FF00) >> 8) | ((c2 & 0x0000FF) << 16);
        return c1 - c2;
    };

    static Comparator<MInteger> bgr = (color1, color2) -> {
        int c1 = color1.val;
        int c2 = color2.val;
        c1 = ((c1 & 0xFF0000) >> 16) | ((c1 & 0x00FF00)) | ((c1 & 0x0000FF) << 16);
        c2 = ((c2 & 0xFF0000) >> 16) | ((c2 & 0x00FF00)) | ((c2 & 0x0000FF) << 16);
        return c1 - c2;
    };

    public static void validate(BufferedImage palette, BufferedImage result) {
        List<Integer> paletteColors = getTrueColors(palette);
        List<Integer> resultColors = getTrueColors(result);
        Collections.sort(paletteColors);
        Collections.sort(resultColors);
        System.out.println(paletteColors.equals(resultColors));
    }

    public static List<Integer> getTrueColors(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Integer> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(img.getRGB(x, y));
            }
        }
        Collections.sort(colors);
        return colors;
    }
}

私のアプローチは、色が3Dであるため、3空間で各ピクセルに最も近い色(おそらく最も近い色)を見つけることによって機能します。

これは、塗りつぶす必要があるすべてのポイントのリストと、使用可能なすべての可能な色のリストを作成することで機能します。点のリストをランダム化して(画像がより良くなるように)、各点を調べてソース画像の色を取得します。

更新:以前は単純にバイナリ検索を使用していたため、赤は緑よりもよく一致し、青よりも一致しました。6つのバイナリ検索(可能なすべての順列)を実行し、最も近い色を選択するように変更しました。所要時間は約6倍(1分)です。写真はまだ粗いですが、色はよりよく一致します。

更新2:リストをランダム化しなくなりました。代わりに、3分の1の規則に従って4つのポイントを選択し、中心を塗りつぶすことを優先して、ポイントをランダムに配置します。

注:古い写真の改訂履歴を参照してください。

モナリザ->川:

ここに画像の説明を入力してください

モナリザ->アメリカンゴシック:

ここに画像の説明を入力してください

モナリザ->レイトレースされた球体:

ここに画像の説明を入力してください

星空->モナリザ:

ここに画像の説明を入力してください


画像の作成方法を示すアニメーションGifを次に示します。

ここに画像の説明を入力してください

そして、モナリザから取られているピクセルを示す:

ここに画像の説明を入力してください


11
それはすごいことです。私はそれが可能だとは思わなかっただろう。
AndoDaan

6
簡単なことではないかと思いますが、元の画像から最終的な画像にピクセルが移動するアニメーションバージョンを作成できるのは素晴らしいことです。
ミリノン14

2
あなたは問題を誤解したと思います。単にパレットの色を使用するのではなく、コピーを作成するためにパレットのピクセルを再配置する必要があります。パレットで表示された回数とまったく同じ回数、それぞれ異なる色をコピーで使用する必要があります。あなたの画像は私のスクリプトを通過していません。
カルビンの趣味14

7
@Quincunx結局のところ、私のスクリプトは正しかったのですが(後世のために単純化しました)、プログラムもそうでした。理由により、アップロード時にモナリザの画像がわずかに変化したかどうかはよくわかりません。(177、377)のピクセルのRGBは(0、0、16)オンラインであり、自宅のコンピューターでは(0、0、14)でした。損失の多いファイルタイプの問題を回避するために、jpegをpngに置き換えました。画像内のピクセルデータは変更されていないはずですが、画像を再度ダウンロードすることをお勧めします。
カルビンの趣味14

8
これは最も一般的な答えではありません。アルゴリズムは不必要に複雑であり、結果は悪いように見えますが、面白そうです。モナリザからレイトレースされた球体への変換を、arditsuの結果と比較してください:i.stack.imgur.com/WhVcO.png
レイフ

97

Perl、Labカラースペースおよびディザリング

注:現在、Cソリューションもあります。

aditsuの場合と同様のアプローチを使用します(2つのランダムな位置を選択し、画像をターゲット画像に近づける場合はそれらの位置のピクセルを交換します)。

  1. CIE L a b *色空間を使用します色を比較する-この空間上のユークリッドメトリックは、2色間の知覚差に非常に良い近似であるので、カラーマッピングは、RGBあるいはHSV / HSLよりも正確でなければなりません。
  2. ピクセルを最適な単一位置に配置する最初のパスの後、ランダムディザーを使用して追加のパスを実行します。2つのスワップ位置でピクセル値を比較する代わりに、スワップ位置を中心とした3x3近傍の平均ピクセル値を計算します。スワップにより、個々のピクセルの精度が低下した場合でも、許容される近傍の平均色が改善される場合。一部の画像ペアでは、これは品質に疑わしい影響を与えます(そして、パレット効果を目立たなくします)が、一部(球など->何でも)にはかなり役立ちます。「詳細」要素は、中心ピクセルをさまざまな程度に強調します。増加させると、ディザの全体的な量は減少しますが、ターゲットイメージの詳細は維持されます。ディザリングされた最適化は遅くなり、

ディザのようにラボの平均値は実際には正当化されていませ(XYZに変換され、平均化され、元に戻される必要があります)が、これらの目的には問題なく機能します。

これらのイメージには、100および200の終了制限(5000回に1回未満のスワップが受け入れられた場合に第1フェーズを終了し、2500回に1回の第2フェーズ)と12のディザリング詳細係数(以前のセットより少しきついディザリング)があります)。この超高品質の設定では、画像の生成に時間がかかりますが、並列化を行うと、6コアボックスでジョブ全体が1時間以内に終了します。値を最大500程度にバンプすると、数分で画像が完成しますが、わずかに磨かれて見えます。ここでアルゴリズムを最大限に披露したかったのです。

コードは決してきれいではありません:

#!/usr/bin/perl
use strict;
use warnings;
use Image::Magick;
use Graphics::ColorObject 'RGB_to_Lab';
use List::Util qw(sum max);

my $source = Image::Magick->new;
$source->Read($ARGV[0]);
my $target = Image::Magick->new;
$target->Read($ARGV[1]);
my ($limit1, $limit2, $detail) = @ARGV[2,3,4];

my ($width, $height) = ($target->Get('width'), $target->Get('height'));

# Transfer the pixels of the $source onto a new canvas with the diemnsions of $target
$source->Set(magick => 'RGB');
my $img = Image::Magick->new(size => "${width}x${height}", magick => 'RGB', depth => 8);
$img->BlobToImage($source->ImageToBlob);

my ($made, $rejected) = (0,0);

system("rm anim/*.png");

my (@img_lab, @target_lab);
for my $x (0 .. $width) {
  for my $y (0 .. $height) {
    $img_lab[$x][$y] = RGB_to_Lab([$img->getPixel(x => $x, y => $y)], 'sRGB');
    $target_lab[$x][$y] = RGB_to_Lab([$target->getPixel(x => $x, y => $y)], 'sRGB');
  }
}

my $n = 0;
my $frame = 0;
my $mode = 1;

while (1) {
  $n++;

  my $swap = 0;
  my ($x1, $x2, $y1, $y2) = (int rand $width, int rand $width, int rand $height, int rand $height);
  my ($dist, $dist_swapped);

  if ($mode == 1) {
    $dist = (sum map { ($img_lab[$x1][$y1][$_] - $target_lab[$x1][$y1][$_])**2 } 0..2)
          + (sum map { ($img_lab[$x2][$y2][$_] - $target_lab[$x2][$y2][$_])**2 } 0..2);

    $dist_swapped = (sum map { ($img_lab[$x2][$y2][$_] - $target_lab[$x1][$y1][$_])**2 } 0..2)
                  + (sum map { ($img_lab[$x1][$y1][$_] - $target_lab[$x2][$y2][$_])**2 } 0..2);

  } else { # dither mode
    my $xoffmin = ($x1 == 0 || $x2 == 0 ? 0 : -1);
    my $xoffmax = ($x1 == $width - 1 || $x2 == $width - 1 ? 0 : 1);
    my $yoffmin = ($y1 == 0 || $y2 == 0 ? 0 : -1);
    my $yoffmax = ($y1 == $height - 1 || $y2 == $height - 1 ? 0 : 1);

    my (@img1, @img2, @target1, @target2, $points);
    for my $xoff ($xoffmin .. $xoffmax) {
      for my $yoff ($yoffmin .. $yoffmax) {
        $points++;
        for my $chan (0 .. 2) {
          $img1[$chan] += $img_lab[$x1+$xoff][$y1+$yoff][$chan];
          $img2[$chan] += $img_lab[$x2+$xoff][$y2+$yoff][$chan];
          $target1[$chan] += $target_lab[$x1+$xoff][$y1+$yoff][$chan];
          $target2[$chan] += $target_lab[$x2+$xoff][$y2+$yoff][$chan];
        }
      }
    }

    my @img1s = @img1;
    my @img2s = @img2;
    for my $chan (0 .. 2) {
      $img1[$chan] += $img_lab[$x1][$y1][$chan] * ($detail - 1);
      $img2[$chan] += $img_lab[$x2][$y2][$chan] * ($detail - 1);

      $target1[$chan] += $target_lab[$x1][$y1][$chan] * ($detail - 1);
      $target2[$chan] += $target_lab[$x2][$y2][$chan] * ($detail - 1);

      $img1s[$chan] += $img_lab[$x2][$y2][$chan] * $detail - $img_lab[$x1][$y1][$chan];
      $img2s[$chan] += $img_lab[$x1][$y1][$chan] * $detail - $img_lab[$x2][$y2][$chan];
    }

    $dist = (sum map { ($img1[$_] - $target1[$_])**2 } 0..2)
          + (sum map { ($img2[$_] - $target2[$_])**2 } 0..2);

    $dist_swapped = (sum map { ($img1s[$_] - $target1[$_])**2 } 0..2)
                  + (sum map { ($img2s[$_] - $target2[$_])**2 } 0..2);

  }

  if ($dist_swapped < $dist) {
    my @pix1 = $img->GetPixel(x => $x1, y => $y1);
    my @pix2 = $img->GetPixel(x => $x2, y => $y2);
    $img->SetPixel(x => $x1, y => $y1, color => \@pix2);
    $img->SetPixel(x => $x2, y => $y2, color => \@pix1);
    ($img_lab[$x1][$y1], $img_lab[$x2][$y2]) = ($img_lab[$x2][$y2], $img_lab[$x1][$y1]);
    $made ++;
  } else {
    $rejected ++;
  }

  if ($n % 50000 == 0) {
#    print "Made: $made Rejected: $rejected\n";
    $img->Write('png:out.png');
    system("cp", "out.png", sprintf("anim/frame%05d.png", $frame++));
    if ($mode == 1 and $made < $limit1) {
      $mode = 2;
      system("cp", "out.png", "nodither.png");
    } elsif ($mode == 2 and $made < $limit2) {
      last;
    }
    ($made, $rejected) = (0, 0);
  }
}

結果

アメリカンゴシックパレット

ここではディザリングの有無にかかわらずほとんど違いはありません。

モナリザパレット

ディザリングは、球体のバンディングを減らしますが、特にきれいではありません。

星空の夜パレット

モナリザはディザリングでもう少し詳細を保持します。Spheresは、前回とほぼ同じ状況です。

スクリームパレット

ディザリングなしの星空は、これまでで最も素晴らしいものです。ディザリングは写真の精度を高めますが、あまり面白くありません。

球体パレット

aditsuが言うように、真のテスト。合格したと思う。

ディザリングは、アメリカンゴシックやモナリザと非常に役立ち、いくつかのグレーやその他の色をより強力なピクセルと混合して、ひどいしみの代わりに半正確な肌のトーンを生成します。スクリームの影響ははるかに少ないです。

カマロ-マスタング

flawrの投稿のソース画像。

カマロ:

マスタング:

カマロパレット

ディザーなしで非常によく見えます。

「きつい」ディザ(上記と同じ詳細係数)はあまり変化せず、ボンネットと屋根のハイライトに少し詳細を追加するだけです。

「ゆるい」ディザー(ディテールファクターが6に低下)は、色調を本当に滑らかにし、フロントガラスを通してより多くのディテールが見えますが、ディザリングパターンはどこでもより明白です。

マスタングパレット

車の部品は見栄えが良いが、灰色のピクセルはグリッチが多い。さらに悪いことに、暗い黄色のピクセルはすべて赤いカマロのボディに分散され、ディザリングのないアルゴリズムは明るいピクセルとは何の関係もありません(それらを車に移動するとマッチが悪くなり、別の場所に移動します背景のスポットは正味の違いはありません)、したがって、背景にゴーストムスタングがあります。

ディザリングは、これらの余分な黄色のピクセルを周囲に広げて、それらが触れないようにすることができ、プロセス中の背景に均等に散らばります。車のハイライトと影が少し良く見えます。

繰り返しますが、ルーズディザーは最も均一な調子を持ち、ヘッドライトとフロントガラスの詳細を明らかにします。車は再び赤く見えます。何らかの理由で背景がぎこちない。私はそれが好きかどうかわからない。

ビデオ

HQリンク


3
私はこれが本当に好きです。重くディザリングされた画像は驚くほど点描的な感じがします。スーラはモナリザは誰ですか?
スパイダーボリス14

2
あなたのアルゴリズムは間違いなく、恐ろしいSpheresパレットで素晴らしい仕事をしています、良い仕事です!
スノーボディ14

1
@hobbsレインボーパレットの素晴らしい使用、そしてあなたの車はほぼ完璧です!YouTubeビデオであなたの画像のいくつかを使用してアニメーションスクリプトを紹介しても大丈夫でしょうか?
カルビンの趣味14

1
ディザリングがそのパターンを与える唯一の理由は、中心の重みのみが変更された3x3ピクセルのブロックを使用しているためだと思います。中心からの距離に応じてピクセルに重みを付けた場合(コーナーピクセルの寄与が隣接する4つのピクセルより少なくなる)、場合によってはピクセルをわずかに増やして、ディザリングは目立たなくなります。それはそれは...行うことができ、より何を見て価値があるかもしれませんすでに虹パレットのため、このような大きな改善だ
センモウヒラムシ

1
@githubphagocyte私は半日をかけてそのようなものを試してみましたが、どれも私が望んでいた方法でうまくいきませんでした。1つのバリアントは非常に素晴らしいランダムに見えるディザを生成しましたが、終了しない最適化フェーズも提供しました。他のバリアントでは、アーティファクトが悪化するか、ディザリングが強すぎます。ただし、ImageCagickのスプライン補間のおかげで、私のCソリューションのディザリングは改善されました。3次スプラインなので、5x5の近傍を使用していると思います。
ホッブズ

79

Python

考え方は簡単です。すべてのピクセルには3D RGB空間にポイントがあります。目標は、ソースのピクセルと宛先イメージの1つをそれぞれ一致させることです。できれば、それらは「近い」(「同じ」色を表す)必要があります。それらはかなり異なる方法で配布できるため、最も近い隣人と一致させることはできません。

戦略

ましょうn整数(小さい、3-255程度)。これで、RGB空間のピクセルクラウドが最初の軸(R)でソートされます。このピクセルのセットは、n個のパーティションに分割されています。各パーティションは、2番目の軸(B)に沿ってソートされます。これも、パーティション分割と同じ方法でソートされます。両方の写真でこれを行い、今では両方のポイントの配列があります。これで、配列内の位置によってピクセルを一致させることができます。各配列内の同じ位置にあるピクセルは、RGB空間内の各ピクセルクラウドに対して同様の位置にあります。

両方の画像のRGB空間でのピクセルの分布が類似している場合(3軸に沿ってのみシフトおよび/または引き伸ばされることを意味する)、結果はかなり予測可能です。分布が完全に異なって見える場合、このアルゴリズムは(最後の例で見られるように)良い結果を生成しませんが、これは私が考えるより難しいケースの1つでもあります。それがしないことは、知覚における隣接ピクセルの相互作用の効果を使用することです。

コード

免責事項:私はPythonの絶対的な初心者です。

from PIL import Image

n = 5 #number of partitions per channel.

src_index = 3 #index of source image
dst_index = 2 #index of destination image

images =  ["img0.bmp","img1.bmp","img2.bmp","img3.bmp"];
src_handle = Image.open(images[src_index])
dst_handle = Image.open(images[dst_index])
src = src_handle.load()
dst = dst_handle.load()
assert src_handle.size[0]*src_handle.size[1] == dst_handle.size[0]*dst_handle.size[1],"images must be same size"

def makePixelList(img):
    l = []
    for x in range(img.size[0]):
        for y in range(img.size[1]):
            l.append((x,y))
    return l

lsrc = makePixelList(src_handle)
ldst = makePixelList(dst_handle)

def sortAndDivide(coordlist,pixelimage,channel): #core
    global src,dst,n
    retlist = []
    #sort
    coordlist.sort(key=lambda t: pixelimage[t][channel])
    #divide
    partitionLength = int(len(coordlist)/n)
    if partitionLength <= 0:
        partitionLength = 1
    if channel < 2:
        for i in range(0,len(coordlist),partitionLength):
            retlist += sortAndDivide(coordlist[i:i+partitionLength],pixelimage,channel+1)
    else:
        retlist += coordlist
    return retlist

print(src[lsrc[0]])

lsrc = sortAndDivide(lsrc,src,0)
ldst = sortAndDivide(ldst,dst,0)

for i in range(len(ldst)):
    dst[ldst[i]] = src[lsrc[i]]

dst_handle.save("exchange"+str(src_index)+str(dst_index)+".png")

結果

単純な解決策を考えると、悪くないことがわかったと思います。もちろん、パラメーターをいじったり、最初に色を別の色空間に変換したり、パーティション化を最適化したりしても、より良い結果を得ることができます。

私の結果の比較

完全なギャラリーはこちら:https : //imgur.com/a/hzaAm#6

川の詳細

モナリザ>川

モナリザ>川

人>川

人>川

ボール>川

ボール>川

星空>川

ノクターン>川

叫び>川

thecry>川

ボール>モナリザ、さまざまなn = 2,4,6、...、20

これは、素敵な写真とはほど遠い、私が思う最も難しいタスクでした。ここでは、差分パラメーター値n = 2,4,6、...、20のgif(256色に減らす必要がありました)。私にとって、非常に低い値がより良い画像を生成することは驚くべきことでした(リサ女史の顔を見たとき): ボール>モナリザ

すみません、止められません

どちらが好きですか?シボレーカマロまたはフォードマスタング?おそらく、この手法を改善して、bw画像の色付けに使用できます。ここで:最初に車を背景から大まかに切り取り(ペイントではなく、専門的ではない)ペイントし、各方向でpythonプログラムを使用しました。

オリジナル

元の 元の

再着色

いくつかのアーティファクトがあります。1台の車の面積が他の車の面積よりもわずかに大きかったため、そして私の芸術的スキルがかなり悪いためです=) 操作された ここに画像の説明を入力してください


5
うわー、私は星空の夜の川が大好きで、The Screamがいかに火の川のように見えるかが大好きです。
カルビンの趣味14

@ Calvin'sHobbiesすごい!新しい画像をアップロードするのに忙しかったので、それらはほとんど描かれているように見えます。
flawr

3
車の変身が大好きです。これはかつて何らかの画像編集の変換になるかもしれません。
tomsmeding

@tomsmedingありがとうございます、私はすでに白黒画像の色付けのためのテクニックを使用することを考えていましたが、今のところ限られた成功しかありません。しかし、おそらくこれを行うには、さらにいくつかのアイデアが必要です=)
flawr 14

@flawr YouTubeビデオであなたの画像のいくつかを使用してアニメーションスクリプトを紹介しても大丈夫でしょうか?
カルバンの趣味14

48

Python-理論的に最適なソリューション

本当に最適なソリューションを計算することは非常に現実的ではないため、理論的に最適と言います。理論的な解決策を説明することから始めて、それを空間と時間の両方で計算的に実行可能にするためにどのように微調整したかを説明します。

私は、最適なソリューションを、古いイメージと新しいイメージの間のすべてのピクセルで最小の合計エラーを生成するものと考えています。2つのピクセル間の誤差は、各色値(R、G、B)が座標である3D空間のポイント間のユークリッド距離として定義されます。人間が物事を見る方法のため、実際には、最適な解決策は非常によくないかもしれない最高の見ているソリューション。ただし、すべての場合でかなりうまくいくようです。

マッピングを計算するために、これを最小重みの二部マッチング問題と考えました。つまり、元のピクセルとパレットピクセルの2セットのノードがあります。2つのセットの各ピクセル間にエッジが作成されます(ただし、セット内にエッジは作成されません)。前述のように、エッジのコストまたは重みは、2つのピクセル間のユークリッド距離です。2つの色が視覚的に近いほど、ピクセル間のコストが低くなります。

二部マッチングの例

これにより、サイズN 2のコストマトリックスが作成されます。N = 123520であるこれらの画像の場合、コストを整数で表し、その半分を短い整数で表すには、約40 GBのメモリが必要です。いずれにせよ、試行するのに十分なメモリがマシンにありませんでした。別の問題は、この問題を解決するために使用できるハンガリーのアルゴリズム、またはJonker-VolgenantアルゴリズムがN 3時間で実行されることです。間違いなく計算可能ですが、画像ごとにソリューションを生成するには、おそらく数時間または数日かかりました。

この問題を回避するには、両方のピクセルリストをランダムに並べ替え、リストをCチャンクに分割し、各サブリストペアでJonker-VolgenantアルゴリズムのC ++実装を実行し、リストを結合して最終マッピングを作成します。したがって、以下のコードを使用すると、チャンクサイズCを1(チャンクなし)に設定し、十分なメモリを確保できれば、真に最適なソリューションを見つけることができます。これらの画像では、Cを16に設定して、Nが7720になるようにし、画像ごとに数分かかります。

これがなぜ機能するのかを考える簡単な方法は、ピクセルのリストをランダムに並べ替えてからサブセットを取得することは、画像をサンプリングするようなものです。したがって、C = 16に設定することは、元とパレットの両方からサイズN / Cの16のランダムサンプルを取得するようなものです。確かに、おそらくリストを分割するより良い方法がありますが、ランダムなアプローチはまともな結果を提供します。

import subprocess
import multiprocessing as mp
import sys
import os
import sge
from random import shuffle
from PIL import Image
import numpy as np
import LAPJV
import pdb

def getError(p1, p2):
    return (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2 + (p1[2]-p2[2])**2

def getCostMatrix(pallete_list, source_list):
    num_pixels = len(pallete_list)
    matrix = np.zeros((num_pixels, num_pixels))

    for i in range(num_pixels):
        for j in range(num_pixels):
            matrix[i][j] = getError(pallete_list[i], source_list[j])

    return matrix

def chunks(l, n):
    if n < 1:
        n = 1
    return [l[i:i + n] for i in range(0, len(l), n)]

def imageToColorList(img_file):
    i = Image.open(img_file)

    pixels = i.load()
    width, height = i.size

    all_pixels = []
    for x in range(width):
        for y in range(height):
            pixel = pixels[x, y]
            all_pixels.append(pixel)

    return all_pixels

def colorListToImage(color_list, old_img_file, new_img_file, mapping):
    i = Image.open(old_img_file)

    pixels = i.load()
    width, height = i.size
    idx = 0

    for x in range(width):
        for y in range(height):
            pixels[x, y] = color_list[mapping[idx]]
            idx += 1

    i.save(new_img_file)

def getMapping(pallete_list, source_list):
    matrix = getCostMatrix(source_list, pallete_list)
    result = LAPJV.lap(matrix)[1]
    ret = []
    for i in range(len(pallete_list)):
        ret.append(result[i])
    return ret

def randomizeList(l):
    rdm_l = list(l)
    shuffle(rdm_l)
    return rdm_l

def getPartialMapping(zipped_chunk):
    pallete_chunk = zipped_chunk[0]
    source_chunk = zipped_chunk[1]
    subl_pallete = map(lambda v: v[1], pallete_chunk)
    subl_source = map(lambda v: v[1], source_chunk)
    mapping = getMapping(subl_pallete, subl_source)
    return mapping

def getMappingWithPartitions(pallete_list, source_list, C = 1):
    rdm_pallete = randomizeList(enumerate(pallete_list))
    rdm_source = randomizeList(enumerate(source_list))
    num_pixels = len(rdm_pallete)
    real_mapping = [0] * num_pixels

    chunk_size = int(num_pixels / C)

    chunked_rdm_pallete = chunks(rdm_pallete, chunk_size)
    chunked_rdm_source = chunks(rdm_source, chunk_size)
    zipped_chunks = zip(chunked_rdm_pallete, chunked_rdm_source)

    pool = mp.Pool(2)
    mappings = pool.map(getPartialMapping, zipped_chunks)

    for mapping, zipped_chunk in zip(mappings, zipped_chunks):
        pallete_chunk = zipped_chunk[0]
        source_chunk = zipped_chunk[1]
        for idx1,idx2 in enumerate(mapping):
            src_px = source_chunk[idx1]
            pal_px = pallete_chunk[idx2]
            real_mapping[src_px[0]] = pal_px[0]

    return real_mapping

def run(pallete_name, source_name, output_name):
    print("Getting Colors...")
    pallete_list = imageToColorList(pallete_name)
    source_list = imageToColorList(source_name)

    print("Creating Mapping...")
    mapping = getMappingWithPartitions(pallete_list, source_list, C = 16)

    print("Generating Image...");
    colorListToImage(pallete_list, source_name, output_name, mapping)

if __name__ == '__main__':
    pallete_name = sys.argv[1]
    source_name = sys.argv[2]
    output_name = sys.argv[3]
    run(pallete_name, source_name, output_name)

結果:

aditsuのソリューションと同様に、これらの画像はすべてまったく同じパラメーターを使用して生成されました。ここでの唯一のパラメーターはCで、可能な限り低く設定する必要があります。私にとって、C = 16は速度と品質の良いバランスでした。

すべての画像:http : //imgur.com/a/RCZiX#0

アメリカンゴシックパレット

モナゴシック 悲鳴ゴシック

モナリザパレット

ゴシックモナ スクリームモナ

星空の夜パレット

モナナイト 川の夜

スクリームパレット

ゴシックスクリーム モナスクリーム

川のパレット

ゴシック球 モナ球

球体パレット

ゴシック球 モナ球


4
(Scream-> Starry night)と(Spheres-> Starry night)が本当に好きです。(Spheres-> Mona Lisa)もそれほど悪くはありませんが、ディザリングをもっと見たいです。
ジョン・ドヴォルザーク

笑、私は2部グラフマッチングについて同じことを考えていますが、アイデアをabandondedたので、N ^ 3 ...
RobAu

この「ほぼ決定論的な」アルゴリズムは、IMOの決定論的なアルゴリズムをすべて打ち負かし、ランダム化された適切なアルゴリズムに対抗します。私はそれが好きです。
ホッブズ14

1
最適なソリューションの概念に同意しません。どうして?ディザリングは、知覚品質(人間用)を改善できますが、定義を使用してより低いスコアを生成できます。また、CIELUVのようなものの上にRGBを使用するのは間違いです。
トーマスエディング14

39

Python

編集:ImageFilterを使用してソースを実際にシャープにして、結果をより明確にすることができることに気付きました。

虹->モナリザ(シャープなモナリザのソース、輝度のみ)

ここに画像の説明を入力してください

虹->モナリザ(Y = 10、I = 10、Q = 0で重み付けされた非シャープソース)

ここに画像の説明を入力してください

モナリザ->アメリカンゴシック(シャープでないソース、輝度のみ)

ここに画像の説明を入力してください

モナリザ->アメリカンゴシック(非シャープソース、Y = 1、I = 10、Q = 1で重み付け)

ここに画像の説明を入力してください

川->虹(非シャープソース、輝度のみ)

ここに画像の説明を入力してください

基本的に、2つの画像からすべてのピクセルを2つのリストに取得します。

輝度をキーにして並べ替えます。YIQのYは輝度を表します。

次に、ソース内の各ピクセル(輝度の昇順)について、パレットリスト内の同じインデックスのピクセルからRGB値を取得します。

import Image, ImageFilter, colorsys

def getPixels(image):
    width, height = image.size
    pixels = []
    for x in range(width):
        for y in range(height):
            pixels.append([(x,y), image.getpixel((x,y))])
    return pixels

def yiq(pixel):
    # y is the luminance
    y,i,q = colorsys.rgb_to_yiq(pixel[1][0], pixel[1][6], pixel[1][7])
    # Change the weights accordingly to get different results
    return 10*y + 0*i + 0*q

# Open the images
source  = Image.open('ml.jpg')
pallete = Image.open('rainbow.png')

# Sharpen the source... It won't affect the palette anyway =D
source = source.filter(ImageFilter.SHARPEN)

# Sort the two lists by luminance
sourcePixels  = sorted(getPixels(source),  key=yiq)
palletePixels = sorted(getPixels(pallete), key=yiq)

copy = Image.new('RGB', source.size)

# Iterate through all the coordinates of source
# And set the new color
index = 0
for sourcePixel in sourcePixels:
    copy.putpixel(sourcePixel[0], palletePixels[index][8])
    index += 1

# Save the result
copy.save('copy.png')

アニメーションの動向についていくために...

悲鳴の中のピクセルは星空とその逆にクイックソートされます

ここに画像の説明を入力してください ここに画像の説明を入力してください


2
そのシンプルなアイデアは本当にうまくいきます。拡張して、重み付けされた輝度、彩度、色相を使用できるかどうか疑問に思います。(たとえば、10 * L + S + H)同じ領域の色をより良く一致させます。
ムージー14

1
@bitpwnrあなたの画像は私のスクリプトを通過しませんが、それは私が最初に持っているわずかに異なるjpegを使用しているので、ほぼ確実です。ただし、[6]、[7]、および[8]を[1]、[2]、および[1]に置き換えた後のみ、コードを実行できました。私は、同じ画像を取得していますが、それは非常にユニークなタイプミスです:P
カルバンの趣味

あなたの画像は非常に鮮明ですが、ちょっと
彩度が低い

@ Calvin'sHobbies Opps、タイプミスを修正しました。
2014

@bitpwner YouTubeビデオであなたの画像のいくつかを使用してアニメーションスクリプトを紹介しても大丈夫でしょうか?
カルビンの趣味14

39

C#Winform-Visual Studio 2010

ディザリングの編集が追加されました。

これが私のバージョンのランダムスワップアルゴリズム-@hobbs flavourです。私はまだ、ある種の非ランダムなディザリングがより良くできると感じています...

Y-Cb-Cr空間での色の精緻化(jpeg圧縮など)

2段階の詳細:

  1. 輝度順でのソースからのピクセルのコピー。これはすでに良好な画像を提供しますが、彩度が低い-ほぼグレースケール-ほぼ0時間で
  2. ピクセルのランダムスワップの繰り返し。ピクセルを含む3x3セルでより良いデルタ(ソースに対して)が得られる場合、スワップが行われます。したがって、それはディザリング効果です。デルタは、Y-Cr-Cb空間で計算され、異なるコンポーネントの重み付けはありません。

これは、基本的に@hobbsで使用される方法と同じですが、ディザリングなしの最初のランダムスワップはありません。ちょうど、私の時間は短く(言語はカウントされますか?)、私の画像はより良いと思います(おそらく、使用される色空間はより正確です)。

プログラムの使用:.png画像をc:\ tempフォルダーに配置し、リスト内の要素をチェックしてパレット画像を選択し、リスト内の要素を選択してソース画像を選択します(ユーザーフレンドリーではありません)。開始ボタンをクリックしてエラボレーションを開始します。保存は自動的に行われます(使用しない場合でも注意してください)。

90秒未満のエラボレーション時間。

更新された結果

パレット:アメリカンゴシック

モナリザ 虹 川 悲鳴 星が輝く夜

パレット:モナリザ

ゴシックアメリカ 虹 川 悲鳴 星が輝く夜

パレット:虹

ゴシックアメリカ モナリザ 川 悲鳴 星が輝く夜

パレット:川

ゴシックアメリカ モナリザ 虹 悲鳴 星が輝く夜

パレット:スクリーム

ゴシックアメリカ モナリザ 虹 川 星が輝く夜

パレット:星空

ゴシックアメリカ モナリザ 虹 川 悲鳴

Form1.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Drawing.Imaging;
using System.IO;

namespace Palette
{
    public struct YRB
    {
        public int y, cb, cr;

        public YRB(int r, int g, int b)
        {
            y = (int)(0.299 * r + 0.587 * g + 0.114 * b);
            cb = (int)(128 - 0.168736 * r - 0.331264 * g + 0.5 * b);
            cr = (int)(128 + 0.5 * r - 0.418688 * g - 0.081312 * b);
        }
    }

    public struct Pixel
    {
        private const int ARGBAlphaShift = 24;
        private const int ARGBRedShift = 16;
        private const int ARGBGreenShift = 8;
        private const int ARGBBlueShift = 0;

        public int px, py;
        private uint _color;
        public YRB yrb;

        public Pixel(uint col, int px = 0, int py = 0)
        {
            this.px = px;
            this.py = py;
            this._color = col;
            yrb = new YRB((int)(col >> ARGBRedShift) & 255, (int)(col >> ARGBGreenShift) & 255, (int)(col >> ARGBBlueShift) & 255); 
        }

        public uint color
        {
            get { 
                return _color; 
            }
            set {
                _color = color;
                yrb = new YRB((int)(color >> ARGBRedShift) & 255, (int)(color >> ARGBGreenShift) & 255, (int)(color >> ARGBBlueShift) & 255);
            }
        }

        public int y
        {
            get { return yrb.y; }
        }
        public int cr
        {
            get { return yrb.cr; }
        }
        public int cb
        {
            get { return yrb.cb; }
        }
    }

    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            DirectoryInfo di = new System.IO.DirectoryInfo(@"c:\temp\");
            foreach (FileInfo file in di.GetFiles("*.png"))
            {
                ListViewItem item = new ListViewItem(file.Name);
                item.SubItems.Add(file.FullName);
                lvFiles.Items.Add(item);
            }
        }

        private void lvFiles_ItemSelectionChanged(object sender, ListViewItemSelectionChangedEventArgs e)
        {
            if (e.IsSelected)
            {
                string file = e.Item.SubItems[1].Text;
                GetImagePB(pbSource, file);
                pbSource.Tag = file; 
                DupImage(pbSource, pbOutput);

                this.Width = pbOutput.Width + pbOutput.Left + 20;
                this.Height = Math.Max(pbOutput.Height, pbPalette.Height)+lvFiles.Height*2;   
            }
        }

        private void lvFiles_ItemCheck(object sender, ItemCheckEventArgs e)
        {
            foreach (ListViewItem item in lvFiles.CheckedItems)
            {
                if (item.Index != e.Index) item.Checked = false;
            }
            string file = lvFiles.Items[e.Index].SubItems[1].Text;
            GetImagePB(pbPalette, file);
            pbPalette.Tag = lvFiles.Items[e.Index].SubItems[0].Text; 

            this.Width = pbOutput.Width + pbOutput.Left + 20;
            this.Height = Math.Max(pbOutput.Height, pbPalette.Height) + lvFiles.Height * 2;   
        }

        Pixel[] Palette;
        Pixel[] Source;

        private void BtnStart_Click(object sender, EventArgs e)
        {
            lvFiles.Enabled = false;
            btnStart.Visible = false;
            progressBar.Visible = true; 
            DupImage(pbSource, pbOutput);

            Work(pbSource.Image as Bitmap, pbPalette.Image as Bitmap, pbOutput.Image as Bitmap);

            string newfile = (string)pbSource.Tag +"-"+ (string)pbPalette.Tag;
            pbOutput.Image.Save(newfile, ImageFormat.Png);   

            lvFiles.Enabled = true;
            btnStart.Visible = true;
            progressBar.Visible = false;
        }

        private void Work(Bitmap srcb, Bitmap palb, Bitmap outb)
        {
            GetData(srcb, out Source);
            GetData(palb, out Palette);

            FastBitmap fout = new FastBitmap(outb);
            FastBitmap fsrc = new FastBitmap(srcb);
            int pm = Source.Length;
            int w = outb.Width;
            int h = outb.Height;
            progressBar.Maximum = pm;

            fout.LockImage();
            for (int p = 0; p < pm; p++)
            {
                fout.SetPixel(Source[p].px, Source[p].py, Palette[p].color);
            }
            fout.UnlockImage();

            pbOutput.Refresh();

            var rnd = new Random();
            int totsw = 0;
            progressBar.Maximum = 200;
            for (int i = 0; i < 200; i++)
            {
                int nsw = 0;
                progressBar.Value = i;
                fout.LockImage();
                fsrc.LockImage();
                for (int j = 0; j < 200000; j++)
                {
                    nsw += CheckSwap(fsrc, fout, 1 + rnd.Next(w - 2), 1 + rnd.Next(h - 2), 1 + rnd.Next(w - 2), 1 + rnd.Next(h - 2));
                }
                totsw += nsw;
                lnCurSwap.Text = nsw.ToString();
                lnTotSwap.Text = totsw.ToString();
                fout.UnlockImage();
                fsrc.UnlockImage();
                pbOutput.Refresh();
                Application.DoEvents();
                if (nsw == 0)
                {
                    break;
                }
            }            
        }

        int CheckSwap(FastBitmap fsrc, FastBitmap fout, int x1, int y1, int x2, int y2)
        {
            const int fmax = 3;
            YRB ov1 = new YRB();
            YRB sv1 = new YRB();
            YRB ov2 = new YRB();
            YRB sv2 = new YRB();

            int f;
            for (int dx = -1; dx <= 1; dx++)
            {
                for (int dy = -1; dy <= 1; dy++)
                {
                    f = (fmax - Math.Abs(dx) - Math.Abs(dy));
                    {
                        Pixel o1 = new Pixel(fout.GetPixel(x1 + dx, y1 + dy));
                        ov1.y += o1.y * f;
                        ov1.cb += o1.cr * f;
                        ov1.cr += o1.cb * f;

                        Pixel s1 = new Pixel(fsrc.GetPixel(x1 + dx, y1 + dy));
                        sv1.y += s1.y * f;
                        sv1.cb += s1.cr * f;
                        sv1.cr += s1.cb * f;

                        Pixel o2 = new Pixel(fout.GetPixel(x2 + dx, y2 + dy));
                        ov2.y += o2.y * f;
                        ov2.cb += o2.cr * f;
                        ov2.cr += o2.cb * f;

                        Pixel s2 = new Pixel(fsrc.GetPixel(x2 + dx, y2 + dy));
                        sv2.y += s2.y * f;
                        sv2.cb += s2.cr * f;
                        sv2.cr += s2.cb * f;
                    }
                }
            }
            YRB ox1 = ov1;
            YRB ox2 = ov2;
            Pixel oc1 = new Pixel(fout.GetPixel(x1, y1));
            Pixel oc2 = new Pixel(fout.GetPixel(x2, y2));
            ox1.y += fmax * oc2.y - fmax * oc1.y;
            ox1.cb += fmax * oc2.cr - fmax * oc1.cr;
            ox1.cr += fmax * oc2.cb - fmax * oc1.cb;
            ox2.y += fmax * oc1.y - fmax * oc2.y;
            ox2.cb += fmax  * oc1.cr - fmax * oc2.cr;
            ox2.cr += fmax * oc1.cb - fmax * oc2.cb;

            int curd = Delta(ov1, sv1, 1) + Delta(ov2, sv2, 1);
            int newd = Delta(ox1, sv1, 1) + Delta(ox2, sv2, 1);
            if (newd < curd)
            {
                fout.SetPixel(x1, y1, oc2.color);
                fout.SetPixel(x2, y2, oc1.color);
                return 1;
            }
            return 0;
        }

        int Delta(YRB p1, YRB p2, int sf)
        {
            int dy = (p1.y - p2.y);
            int dr = (p1.cr - p2.cr);
            int db = (p1.cb - p2.cb);

            return dy * dy * sf + dr * dr + db * db;
        }

        Bitmap GetData(Bitmap bmp, out Pixel[] Output)
        {
            FastBitmap fb = new FastBitmap(bmp);
            BitmapData bmpData = fb.LockImage(); 

            Output = new Pixel[bmp.Width * bmp.Height];

            int p = 0;
            for (int y = 0; y < bmp.Height; y++)
            {
                uint col = fb.GetPixel(0, y);
                Output[p++] = new Pixel(col, 0, y);

                for (int x = 1; x < bmp.Width; x++)
                {
                    col = fb.GetNextPixel();
                    Output[p++] = new Pixel(col, x, y);
                }
            }
            fb.UnlockImage(); // Unlock the bits.

            Array.Sort(Output, (a, b) => a.y - b.y);

            return bmp;
        }

        void DupImage(PictureBox s, PictureBox d)
        {
            if (d.Image != null)
                d.Image.Dispose();
            d.Image = new Bitmap(s.Image.Width, s.Image.Height);  
        }

        void GetImagePB(PictureBox pb, string file)
        {
            Bitmap bms = new Bitmap(file, false);
            Bitmap bmp = bms.Clone(new Rectangle(0, 0, bms.Width, bms.Height), PixelFormat.Format32bppArgb);
            bms.Dispose(); 
            if (pb.Image != null)
                pb.Image.Dispose();
            pb.Image = bmp;
        }
    }

    //Adapted from Visual C# Kicks - http://www.vcskicks.com/
    unsafe public class FastBitmap
    {
        private Bitmap workingBitmap = null;
        private int width = 0;
        private BitmapData bitmapData = null;
        private Byte* pBase = null;

        public FastBitmap(Bitmap inputBitmap)
        {
            workingBitmap = inputBitmap;
        }

        public BitmapData LockImage()
        {
            Rectangle bounds = new Rectangle(Point.Empty, workingBitmap.Size);

            width = (int)(bounds.Width * 4 + 3) & ~3;

            //Lock Image
            bitmapData = workingBitmap.LockBits(bounds, ImageLockMode.ReadWrite, PixelFormat.Format32bppArgb);
            pBase = (Byte*)bitmapData.Scan0.ToPointer();
            return bitmapData;
        }

        private uint* pixelData = null;

        public uint GetPixel(int x, int y)
        {
            pixelData = (uint*)(pBase + y * width + x * 4);
            return *pixelData;
        }

        public uint GetNextPixel()
        {
            return *++pixelData;
        }

        public void GetPixelArray(int x, int y, uint[] Values, int offset, int count)
        {
            pixelData = (uint*)(pBase + y * width + x * 4);
            while (count-- > 0)
            {
                Values[offset++] = *pixelData++;
            }
        }

        public void SetPixel(int x, int y, uint color)
        {
            pixelData = (uint*)(pBase + y * width + x * 4);
            *pixelData = color;
        }

        public void SetNextPixel(uint color)
        {
            *++pixelData = color;
        }

        public void UnlockImage()
        {
            workingBitmap.UnlockBits(bitmapData);
            bitmapData = null;
            pBase = null;
        }
    }

}

Form1.Designer.cs

namespace Palette
{
    partial class Form1
    {
        /// <summary>
        /// Variabile di progettazione necessaria.
        /// </summary>
        private System.ComponentModel.IContainer components = null;

        /// <summary>
        /// Liberare le risorse in uso.
        /// </summary>
        /// <param name="disposing">ha valore true se le risorse gestite devono essere eliminate, false in caso contrario.</param>
        protected override void Dispose(bool disposing)
        {
            if (disposing && (components != null))
            {
                components.Dispose();
            }
            base.Dispose(disposing);
        }

        #region Codice generato da Progettazione Windows Form

        /// <summary>
        /// Metodo necessario per il supporto della finestra di progettazione. Non modificare
        /// il contenuto del metodo con l'editor di codice.
        /// </summary>
        private void InitializeComponent()
        {
            this.components = new System.ComponentModel.Container();
            this.panel = new System.Windows.Forms.FlowLayoutPanel();
            this.pbSource = new System.Windows.Forms.PictureBox();
            this.pbPalette = new System.Windows.Forms.PictureBox();
            this.pbOutput = new System.Windows.Forms.PictureBox();
            this.btnStart = new System.Windows.Forms.Button();
            this.progressBar = new System.Windows.Forms.ProgressBar();
            this.imageList1 = new System.Windows.Forms.ImageList(this.components);
            this.lvFiles = new System.Windows.Forms.ListView();
            this.lnTotSwap = new System.Windows.Forms.Label();
            this.lnCurSwap = new System.Windows.Forms.Label();
            this.panel.SuspendLayout();
            ((System.ComponentModel.ISupportInitialize)(this.pbSource)).BeginInit();
            ((System.ComponentModel.ISupportInitialize)(this.pbPalette)).BeginInit();
            ((System.ComponentModel.ISupportInitialize)(this.pbOutput)).BeginInit();
            this.SuspendLayout();
            // 
            // panel
            // 
            this.panel.AutoScroll = true;
            this.panel.AutoSize = true;
            this.panel.Controls.Add(this.pbSource);
            this.panel.Controls.Add(this.pbPalette);
            this.panel.Controls.Add(this.pbOutput);
            this.panel.Dock = System.Windows.Forms.DockStyle.Top;
            this.panel.Location = new System.Drawing.Point(0, 0);
            this.panel.Name = "panel";
            this.panel.Size = new System.Drawing.Size(748, 266);
            this.panel.TabIndex = 3;
            this.panel.WrapContents = false;
            // 
            // pbSource
            // 
            this.pbSource.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
            this.pbSource.Location = new System.Drawing.Point(3, 3);
            this.pbSource.Name = "pbSource";
            this.pbSource.Size = new System.Drawing.Size(157, 260);
            this.pbSource.SizeMode = System.Windows.Forms.PictureBoxSizeMode.AutoSize;
            this.pbSource.TabIndex = 1;
            this.pbSource.TabStop = false;
            // 
            // pbPalette
            // 
            this.pbPalette.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
            this.pbPalette.Location = new System.Drawing.Point(166, 3);
            this.pbPalette.Name = "pbPalette";
            this.pbPalette.Size = new System.Drawing.Size(172, 260);
            this.pbPalette.SizeMode = System.Windows.Forms.PictureBoxSizeMode.AutoSize;
            this.pbPalette.TabIndex = 3;
            this.pbPalette.TabStop = false;
            // 
            // pbOutput
            // 
            this.pbOutput.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;
            this.pbOutput.Location = new System.Drawing.Point(344, 3);
            this.pbOutput.Name = "pbOutput";
            this.pbOutput.Size = new System.Drawing.Size(172, 260);
            this.pbOutput.SizeMode = System.Windows.Forms.PictureBoxSizeMode.AutoSize;
            this.pbOutput.TabIndex = 4;
            this.pbOutput.TabStop = false;
            // 
            // btnStart
            // 
            this.btnStart.Anchor = ((System.Windows.Forms.AnchorStyles)((System.Windows.Forms.AnchorStyles.Bottom | System.Windows.Forms.AnchorStyles.Right)));
            this.btnStart.Location = new System.Drawing.Point(669, 417);
            this.btnStart.Name = "btnStart";
            this.btnStart.Size = new System.Drawing.Size(79, 42);
            this.btnStart.TabIndex = 4;
            this.btnStart.Text = "Start";
            this.btnStart.UseVisualStyleBackColor = true;
            this.btnStart.Click += new System.EventHandler(this.BtnStart_Click);
            // 
            // progressBar
            // 
            this.progressBar.Dock = System.Windows.Forms.DockStyle.Bottom;
            this.progressBar.Location = new System.Drawing.Point(0, 465);
            this.progressBar.Name = "progressBar";
            this.progressBar.Size = new System.Drawing.Size(748, 16);
            this.progressBar.TabIndex = 5;
            // 
            // imageList1
            // 
            this.imageList1.ColorDepth = System.Windows.Forms.ColorDepth.Depth8Bit;
            this.imageList1.ImageSize = new System.Drawing.Size(16, 16);
            this.imageList1.TransparentColor = System.Drawing.Color.Transparent;
            // 
            // lvFiles
            // 
            this.lvFiles.Anchor = ((System.Windows.Forms.AnchorStyles)(((System.Windows.Forms.AnchorStyles.Bottom | System.Windows.Forms.AnchorStyles.Left) 
            | System.Windows.Forms.AnchorStyles.Right)));
            this.lvFiles.CheckBoxes = true;
            this.lvFiles.HideSelection = false;
            this.lvFiles.Location = new System.Drawing.Point(12, 362);
            this.lvFiles.MultiSelect = false;
            this.lvFiles.Name = "lvFiles";
            this.lvFiles.Size = new System.Drawing.Size(651, 97);
            this.lvFiles.Sorting = System.Windows.Forms.SortOrder.Ascending;
            this.lvFiles.TabIndex = 7;
            this.lvFiles.UseCompatibleStateImageBehavior = false;
            this.lvFiles.View = System.Windows.Forms.View.List;
            this.lvFiles.ItemCheck += new System.Windows.Forms.ItemCheckEventHandler(this.lvFiles_ItemCheck);
            this.lvFiles.ItemSelectionChanged += new System.Windows.Forms.ListViewItemSelectionChangedEventHandler(this.lvFiles_ItemSelectionChanged);
            // 
            // lnTotSwap
            // 
            this.lnTotSwap.Anchor = ((System.Windows.Forms.AnchorStyles)((System.Windows.Forms.AnchorStyles.Bottom | System.Windows.Forms.AnchorStyles.Right)));
            this.lnTotSwap.Location = new System.Drawing.Point(669, 362);
            this.lnTotSwap.Name = "lnTotSwap";
            this.lnTotSwap.Size = new System.Drawing.Size(58, 14);
            this.lnTotSwap.TabIndex = 8;
            this.lnTotSwap.Text = "label1";
            // 
            // lnCurSwap
            // 
            this.lnCurSwap.Anchor = ((System.Windows.Forms.AnchorStyles)((System.Windows.Forms.AnchorStyles.Bottom | System.Windows.Forms.AnchorStyles.Right)));
            this.lnCurSwap.Location = new System.Drawing.Point(669, 385);
            this.lnCurSwap.Name = "lnCurSwap";
            this.lnCurSwap.Size = new System.Drawing.Size(58, 14);
            this.lnCurSwap.TabIndex = 9;
            this.lnCurSwap.Text = "label1";
            // 
            // Form1
            // 
            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
            this.BackColor = System.Drawing.SystemColors.ControlDark;
            this.ClientSize = new System.Drawing.Size(748, 481);
            this.Controls.Add(this.lnCurSwap);
            this.Controls.Add(this.lnTotSwap);
            this.Controls.Add(this.lvFiles);
            this.Controls.Add(this.progressBar);
            this.Controls.Add(this.btnStart);
            this.Controls.Add(this.panel);
            this.Name = "Form1";
            this.Text = "Form1";
            this.Load += new System.EventHandler(this.Form1_Load);
            this.panel.ResumeLayout(false);
            this.panel.PerformLayout();
            ((System.ComponentModel.ISupportInitialize)(this.pbSource)).EndInit();
            ((System.ComponentModel.ISupportInitialize)(this.pbPalette)).EndInit();
            ((System.ComponentModel.ISupportInitialize)(this.pbOutput)).EndInit();
            this.ResumeLayout(false);
            this.PerformLayout();

        }

        #endregion

        private System.Windows.Forms.FlowLayoutPanel panel;
        private System.Windows.Forms.PictureBox pbSource;
        private System.Windows.Forms.PictureBox pbPalette;
        private System.Windows.Forms.PictureBox pbOutput;
        private System.Windows.Forms.Button btnStart;
        private System.Windows.Forms.ProgressBar progressBar;
        private System.Windows.Forms.ImageList imageList1;
        private System.Windows.Forms.ListView lvFiles;
        private System.Windows.Forms.Label lnTotSwap;
        private System.Windows.Forms.Label lnCurSwap;
    }
}

Program.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;

namespace Palette
{
    static class Program
    {
        /// <summary>
        /// Punto di ingresso principale dell'applicazione.
        /// </summary>
        [STAThread]
        static void Main()
        {
            Application.EnableVisualStyles();
            Application.SetCompatibleTextRenderingDefault(false);
            Application.Run(new Form1());
        }
    }
}

コンパイルするプロジェクトプロパティの[安全でないコード]をオンにします。


4
IMOこれは最高の結果を生成します
figgycity50

9
そのひどいレインボーパレットでは、それは絶対に信じられません。
マイケルB

1
素晴らしい、勝者!
jjrv

25

JS

2つの画像URLで実行するだけです。

JSパッケージとして、ブラウザで自分で実行できます。さまざまな設定で遊ぶフィドルが提供されます。このフィドル:http : //jsfiddle.net/eithe/J7jEk/は常に最新であることに注意してください(すべての設定が含まれています)。これが成長している(新しいオプションが追加されている)ので、以前のすべてのフィドルを更新するつもりはありません。

呼び出し

  • f("string to image (palette)", "string to image", {object of options});
  • f([[palette pixel], [palette pixel], ..., "string to image", {object of options});

オプション

  • アルゴリズム:'balanced''surrounding''reverse''hsv''yiq''lab'
  • 速度:アニメーション速度
  • 移動:true-アニメーションは開始位置から終了位置までの移動を示す必要があります
  • 周辺:'surrounding'アルゴリズムが選択されている場合、これは、指定されたピクセルの重量を計算するときに考慮される周辺の重量です
  • hsv:'hsv'アルゴリズムが選択されている場合、これらのパラメーターは色相、彩度、値が重みにどの程度影響するかを制御します
  • yiq:'qiv'アルゴリズムが選択されている場合、これらのパラメーターはyiqが重みにどの程度影響するかを制御します
  • lab:'lab'アルゴリズムが選択されている場合、これらのパラメーターはラボが重みにどの程度影響するかを制御します
  • ノイズ:重みに追加されるランダム性の量
  • 一意:パレットのピクセルを1回だけ使用する必要があります(フォトモザイクまたは電球を交換するのに必要なプログラマーの数を参照)。
  • pixel_1 / pixel_2 {width、height}:ピクセルのサイズ(ピクセル単位:D)

ギャラリー(ショーケースでは、特に指定のない限り、私は常にモナリザとアメリカンゴシックを使用しています):


アニメーションは素晴らしいですね!ただし、画像は通常より1ピクセル短くなります。
カルビンの趣味14

@ Calvin's Hobbies-ペンキで切る必要がありました:Pおそらくそこから違いが生まれます。更新しました!
5

私はこれが好きです:jsfiddle.net/q865W/4
ジャスティン

@Quincunx乾杯!加重バージョンでは、さらに良く機能します
14

ワオ。0_0それは本当にいいです。jsfiddle.net/q865W/6
ジャスティン

24

C、Labカラースペースおよび改善されたディザリング

終わったと言った?私は嘘をついた。私は他のソリューションのアルゴリズムが最高だと思いますが、Perlは数の計算タスクに十分なほど速くないので、Cで作業を再実装しました。現在、この投稿のすべての画像をより高い品質で実行します元の画像よりも約3分で、わずかに低い品質(0.5%レベル)が画像ごとに20〜30秒で実行されます。基本的に、すべての作業はImageMagickで行われ、ディザリングはImageMagickの3次スプライン補間を使用して行われます。

コード

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <unistd.h>
#include <wand/MagickWand.h>

#define ThrowWandException(wand) \
{ \
  char \
  *description; \
  \
  ExceptionType \
  severity; \
  \
  description=MagickGetException(wand,&severity); \
  (void) fprintf(stderr,"%s %s %lu %s\n",GetMagickModule(),description); \
  description=(char *) MagickRelinquishMemory(description); \
  abort(); \
  exit(-1); \
}

int width, height; /* Target image size */
MagickWand *source_wand, *target_wand, *img_wand, *target_lab_wand, *img_lab_wand;
PixelPacket *source_pixels, *target_pixels, *img_pixels, *target_lab_pixels, *img_lab_pixels;
Image *img, *img_lab, *target, *target_lab;
CacheView *img_lab_view, *target_lab_view;
ExceptionInfo *e;

MagickWand *load_image(const char *filename) {
  MagickWand *img = NewMagickWand();
  if (!MagickReadImage(img, filename)) {
    ThrowWandException(img);
  }
  return img;
}

PixelPacket *get_pixels(MagickWand *wand) {
  PixelPacket *ret = GetAuthenticPixels(
      GetImageFromMagickWand(wand), 0, 0,
      MagickGetImageWidth(wand), MagickGetImageHeight(wand), e);
  CatchException(e);
  return ret;
}

void sync_pixels(MagickWand *wand) {
  SyncAuthenticPixels(GetImageFromMagickWand(wand), e);
  CatchException(e);
}

MagickWand *transfer_pixels() {
  if (MagickGetImageWidth(source_wand) * MagickGetImageHeight(source_wand)
      != MagickGetImageWidth(target_wand) * MagickGetImageHeight(target_wand)) {
    perror("size mismtch");
  }

  MagickWand *img_wand = CloneMagickWand(target_wand);
  img_pixels = get_pixels(img_wand);
  memcpy(img_pixels, source_pixels, 
      MagickGetImageWidth(img_wand) * MagickGetImageHeight(img_wand) * sizeof(PixelPacket));

  sync_pixels(img_wand);
  return img_wand;
}

MagickWand *image_to_lab(MagickWand *img) {
  MagickWand *lab = CloneMagickWand(img);
  TransformImageColorspace(GetImageFromMagickWand(lab), LabColorspace);
  return lab;
}

int lab_distance(PixelPacket *a, PixelPacket *b) {
  int l_diff = (GetPixelL(a) - GetPixelL(b)) / 256,
      a_diff = (GetPixela(a) - GetPixela(b)) / 256,
      b_diff = (GetPixelb(a) - GetPixelb(b)) / 256;

  return (l_diff * l_diff + a_diff * a_diff + b_diff * b_diff);
}

int should_swap(int x1, int x2, int y1, int y2) {
  int dist = lab_distance(&img_lab_pixels[width * y1 + x1], &target_lab_pixels[width * y1 + x1])
           + lab_distance(&img_lab_pixels[width * y2 + x2], &target_lab_pixels[width * y2 + x2]);
  int swapped_dist = lab_distance(&img_lab_pixels[width * y2 + x2], &target_lab_pixels[width * y1 + x1])
                   + lab_distance(&img_lab_pixels[width * y1 + x1], &target_lab_pixels[width * y2 + x2]);

  return swapped_dist < dist;
}

void pixel_multiply_add(MagickPixelPacket *dest, PixelPacket *src, double mult) {
  dest->red += (double)GetPixelRed(src) * mult;
  dest->green += ((double)GetPixelGreen(src) - 32768) * mult;
  dest->blue += ((double)GetPixelBlue(src) - 32768) * mult;
}

#define min(x,y) (((x) < (y)) ? (x) : (y))
#define max(x,y) (((x) > (y)) ? (x) : (y))

double mpp_distance(MagickPixelPacket *a, MagickPixelPacket *b) {
  double l_diff = QuantumScale * (a->red - b->red),
         a_diff = QuantumScale * (a->green - b->green),
         b_diff = QuantumScale * (a->blue - b->blue);
  return (l_diff * l_diff + a_diff * a_diff + b_diff * b_diff);
}

void do_swap(PixelPacket *pix, int x1, int x2, int y1, int y2) {
  PixelPacket tmp = pix[width * y1 + x1];
  pix[width * y1 + x1] = pix[width * y2 + x2];
  pix[width * y2 + x2] = tmp;
}

int should_swap_dither(double detail, int x1, int x2, int y1, int y2) {
//  const InterpolatePixelMethod method = Average9InterpolatePixel;
  const InterpolatePixelMethod method = SplineInterpolatePixel;

  MagickPixelPacket img1, img2, img1s, img2s, target1, target2;
  GetMagickPixelPacket(img, &img1);
  GetMagickPixelPacket(img, &img2);
  GetMagickPixelPacket(img, &img1s);
  GetMagickPixelPacket(img, &img2s);
  GetMagickPixelPacket(target, &target1);
  GetMagickPixelPacket(target, &target2);
  InterpolateMagickPixelPacket(img, img_lab_view, method, x1, y1, &img1, e);
  InterpolateMagickPixelPacket(img, img_lab_view, method, x2, y2, &img2, e);
  InterpolateMagickPixelPacket(target, target_lab_view, method, x1, y1, &target1, e);
  InterpolateMagickPixelPacket(target, target_lab_view, method, x2, y2, &target2, e);
  do_swap(img_lab_pixels, x1, x2, y1, y2);
//  sync_pixels(img_wand);
  InterpolateMagickPixelPacket(img, img_lab_view, method, x1, y1, &img1s, e);
  InterpolateMagickPixelPacket(img, img_lab_view, method, x2, y2, &img2s, e);
  do_swap(img_lab_pixels, x1, x2, y1, y2);
//  sync_pixels(img_wand);

  pixel_multiply_add(&img1, &img_lab_pixels[width * y1 + x1], detail);
  pixel_multiply_add(&img2, &img_lab_pixels[width * y2 + x2], detail);
  pixel_multiply_add(&img1s, &img_lab_pixels[width * y2 + x2], detail);
  pixel_multiply_add(&img2s, &img_lab_pixels[width * y1 + x1], detail);
  pixel_multiply_add(&target1, &target_lab_pixels[width * y1 + x1], detail);
  pixel_multiply_add(&target2, &target_lab_pixels[width * y2 + x2], detail);

  double dist = mpp_distance(&img1, &target1)
              + mpp_distance(&img2, &target2);
  double swapped_dist = mpp_distance(&img1s, &target1)
                      + mpp_distance(&img2s, &target2);

  return swapped_dist + 1.0e-4 < dist;
}

int main(int argc, char *argv[]) {
  if (argc != 7) {
    fprintf(stderr, "Usage: %s source.png target.png dest nodither_pct dither_pct detail\n", argv[0]);
    return 1;
  }
  char *source_filename = argv[1];
  char *target_filename = argv[2];
  char *dest = argv[3];
  double nodither_pct = atof(argv[4]);
  double dither_pct = atof(argv[5]);
  double detail = atof(argv[6]) - 1;
  const int SWAPS_PER_LOOP = 1000000;
  int nodither_limit = ceil(SWAPS_PER_LOOP * nodither_pct / 100);
  int dither_limit = ceil(SWAPS_PER_LOOP * dither_pct / 100);
  int dither = 0, frame = 0;
  char outfile[256], cmdline[1024];
  sprintf(outfile, "out/%s.png", dest);

  MagickWandGenesis();
  e = AcquireExceptionInfo();
  source_wand = load_image(source_filename);
  source_pixels = get_pixels(source_wand);
  target_wand = load_image(target_filename);
  target_pixels = get_pixels(target_wand);
  img_wand = transfer_pixels();
  img_pixels = get_pixels(img_wand);
  target_lab_wand = image_to_lab(target_wand);
  target_lab_pixels = get_pixels(target_lab_wand);
  img_lab_wand = image_to_lab(img_wand);
  img_lab_pixels = get_pixels(img_lab_wand);
  img = GetImageFromMagickWand(img_lab_wand);
  target = GetImageFromMagickWand(target_lab_wand);
  img_lab_view = AcquireAuthenticCacheView(img, e);
  target_lab_view = AcquireAuthenticCacheView(target,e);
  CatchException(e);

  width = MagickGetImageWidth(img_wand);
  height = MagickGetImageHeight(img_wand);

  while (1) {
    int swaps_made = 0;
    for (int n = 0 ; n < SWAPS_PER_LOOP ; n++) {
      int x1 = rand() % width,
          x2 = rand() % width,
          y1 = rand() % height,
          y2 = rand() % height;

      int swap = dither ?
        should_swap_dither(detail, x1, x2, y1, y2)
        : should_swap(x1, x2, y1, y2);

      if (swap) {
        do_swap(img_pixels, x1, x2, y1, y2);
        do_swap(img_lab_pixels, x1, x2, y1, y2);
        swaps_made ++;
      }
    }

    sync_pixels(img_wand);
    if (!MagickWriteImages(img_wand, outfile, MagickTrue)) {
      ThrowWandException(img_wand);
    }
    img_pixels = get_pixels(img_wand);
    sprintf(cmdline, "cp out/%s.png anim/%s/%05i.png", dest, dest, frame++);
    system(cmdline);

    if (!dither && swaps_made < nodither_limit) {
      sprintf(cmdline, "cp out/%s.png out/%s-nodither.png", dest, dest);
      system(cmdline);
      dither = 1;
    } else if (dither && swaps_made < dither_limit)
      break;
  }

  return 0;
}

コンパイルする

gcc -std=gnu99 -O3 -march=native -ffast-math \
  -o transfer `pkg-config --cflags MagickWand` \
  transfer.c `pkg-config --libs MagickWand` -lm

結果

ほとんどPerlバージョンと同じですが、わずかに優れていますが、いくつかの例外があります。ディザリングは一般的に目立ちません。Scream-> Starry Nightには「炎の山」効果はありません。また、カマロはグレーのピクセルでグリッチが少ないように見えます。Perlバージョンの色空間コードには、低彩度ピクセルのバグがあると思います。

アメリカンゴシックパレット

モナリザパレット

星空の夜パレット

スクリームパレット

球体パレット

マスタング(カマロパレット)

カマロ(マスタングパレット)


はい、確かにあなたのものが最高です。Cで.5%悪化するのはなぜですか?
RMalke

@RMalkeそれは、彼が20〜30秒間しか実行させない場合にのみ悪化します。
trlkly 14

あなたはとして使用される値を投稿してください可能性がありnodither_pctdither_pctそしてdetailこの例では?私はあなたのプログラムをさまざまな組み合わせで実行していますが、私のイメージでは、それらは次善のように見え、パレットはあなたのものに近いので...してください?
アンドレイKostyrka

@AndreïKostyrka 0.1 0.1 1.6は、これらの画像の生成に使用した値です。
ホッブズ

@AndreïKostyrka 0.5 0.5 1.6は、ほぼ同等の品質で、はるかに速い速度を実現するはずです。
ホッブズ

23

エラーの伝播とディザリングを伴うHSLの最も近い値

AllRGBイメージに使用したコードを少し変更しました。これは、妥当な時間とメモリの制約で16メガピクセルの画像を処理するように設計されているため、標準ライブラリにないいくつかのデータ構造クラスを使用します。ただし、ここには既に多くのコードがあり、興味深いコードであるため、これらは省略しました。

AllRGBの場合、画像の特定の領域を優先するウェーブレットを手動で調整します。このガイドなしの使用法では、3番目のルールのレイアウトを想定したウェーブレットを1つ取り上げています。

モナリザのパレットを使用したアメリカンゴシック アメリカンゴシックのパレット入りモナリザ

36の私のお気に入り:

モナリザのパレットのある川

(画像、パレット)の完全なデカルト積

package org.cheddarmonk.graphics;

import org.cheddarmonk.util.*;
import java.awt.Point;
import java.awt.image.*;
import java.io.File;
import java.util.Random;
import javax.imageio.ImageIO;

public class PaletteApproximator {
    public static void main(String[] args) throws Exception {
        // Adjust this to fine-tune for the areas which are most important.
        float[] waveletDefault = new float[] {0.5f, 0.333f, 0.5f, 0.5f, 1};

        generateAndSave(args[0], args[1], args[2], waveletDefault);
    }

    private static void generateAndSave(String paletteFile, String fileIn, String fileOut, float[]... wavelets) throws Exception {
        BufferedImage imgIn = ImageIO.read(new File(fileIn));
        int w = imgIn.getWidth(), h = imgIn.getHeight();

        int[] buf = new int[w * h];
        imgIn.getRGB(0, 0, w, h, buf, 0, w);

        SimpleOctTreeInt palette = loadPalette(paletteFile);
        generate(palette, buf, w, h, wavelets);

        // Masks for R, G, B, A.
        final int[] off = new int[]{0xff0000, 0xff00, 0xff, 0xff000000};
        // The corresponding colour model.
        ColorModel colourModel = ColorModel.getRGBdefault();
        DataBufferInt dbi = new DataBufferInt(buf, buf.length);
        Point origin = new Point(0, 0);
        WritableRaster raster = Raster.createPackedRaster(dbi, w, h, w, off, origin);
        BufferedImage imgOut = new BufferedImage(colourModel, raster, false, null);

        ImageIO.write(imgOut, "PNG", new File(fileOut));
    }

    private static SimpleOctTreeInt loadPalette(String paletteFile) throws Exception {
        BufferedImage img = ImageIO.read(new File(paletteFile));
        int w = img.getWidth(), h = img.getHeight();

        int[] buf = new int[w * h];
        img.getRGB(0, 0, w, h, buf, 0, w);

        // Parameters tuned for 4096x4096
        SimpleOctTreeInt octtree = new SimpleOctTreeInt(0, 1, 0, 1, 0, 1, 16, 12);
        for (int i = 0; i < buf.length; i++) {
            octtree.add(buf[i], transform(buf[i]));
        }

        return octtree;
    }

    private static void generate(SimpleOctTreeInt octtree, int[] buf, int w, int h, float[]... wavelets) {
        int m = w * h;

        LeanBinaryHeapInt indices = new LeanBinaryHeapInt();
        Random rnd = new Random();
        for (int i = 0; i < m; i++) {
            float x = (i % w) / (float)w, y = (i / w) / (float)w;

            float weight = 0;
            for (float[] wavelet : wavelets) {
                weight += wavelet[4] * Math.exp(-Math.pow((x - wavelet[0]) / wavelet[2], 2) - Math.pow((y - wavelet[1]) / wavelet[3], 2));
            }

            // Random element provides some kind of dither
            indices.insert(i, -weight + 0.2f * rnd.nextFloat());
        }

        // Error diffusion buffers.
        float[] errx = new float[m], erry = new float[m], errz = new float[m];

        for (int i = 0; i < m; i++) {
            int idx = indices.pop();
            int x = idx % w, y = idx / w;

            // TODO Bicubic interpolation? For the time being, prefer to scale the input image externally...
            float[] tr = transform(buf[x + w * y]);
            tr[0] += errx[idx]; tr[1] += erry[idx]; tr[2] += errz[idx];

            int pixel = octtree.nearestNeighbour(tr, 2);
            buf[x + y * w] = 0xff000000 | pixel;

            // Don't reuse pixels.
            float[] trPix = transform(pixel);
            boolean ok = octtree.remove(pixel, trPix);
            if (!ok) throw new IllegalStateException("Failed to remove from octtree");

            // Propagate error in 4 directions, not caring whether or not we've already done that pixel.
            // This will lose some error, but that might be a good thing.
            float dx = (tr[0] - trPix[0]) / 4, dy = (tr[1] - trPix[1]) / 4, dz = (tr[2] - trPix[2]) / 4;
            if (x > 0) {
                errx[idx - 1] += dx;
                erry[idx - 1] += dy;
                errz[idx - 1] += dz;
            }
            if (x < w - 1) {
                errx[idx + 1] += dx;
                erry[idx + 1] += dy;
                errz[idx + 1] += dz;
            }
            if (y > 0) {
                errx[idx - w] += dx;
                erry[idx - w] += dy;
                errz[idx - w] += dz;
            }
            if (y < h - 1) {
                errx[idx + w] += dx;
                erry[idx + w] += dy;
                errz[idx + w] += dz;
            }
        }
    }

    private static final float COS30 = (float)Math.sqrt(3) / 2;
    private static float[] transform(int rgb) {
        float r = ((rgb >> 16) & 0xff) / 255.f;
        float g = ((rgb >> 8) & 0xff) / 255.f;
        float b = (rgb & 0xff) / 255.f;

        // HSL cone coords
        float cmax = (r > g) ? r : g; if (b > cmax) cmax = b;
        float cmin = (r < g) ? r : g; if (b < cmin) cmin = b;
        float[] cone = new float[3];
        cone[0] = (cmax + cmin) / 2;
        cone[1] = 0.5f * (1 + r - (g + b) / 2);
        cone[2] = 0.5f * (1 + (g - b) * COS30);
        return cone;
    }
}

22

Python

コード的にも、結果によってもそうではありません。

from blist import blist
from PIL import Image
import random

def randpop(colors):
    j = random.randrange(len(colors))
    return colors.pop(j)

colors = blist(Image.open('in1.png').getdata())
random.shuffle(colors)
target = Image.open('in2.png')

out = target.copy()
data = list(list(i) for i in out.getdata())

assert len(data) == len(colors)

w, h = out.size

coords = []
for i in xrange(h):
    for j in xrange(w):
        coords.append((i, j))

# Adjust color balance
dsum = [sum(d[i] for d in data) for i in xrange(3)]
csum = [sum(c[i] for c in colors) for i in xrange(3)]
adjust = [(csum[i] - dsum[i]) // len(data) for i in xrange(3)]
for i, j in coords:
    for k in xrange(3):
        data[i*w + j][k] += adjust[k]

random.shuffle(coords)

# larger value here gives better results but take longer
choose = 100
threshold = 10

done = set()
while len(coords):
    if not len(coords) % 1000:
        print len(coords) // 1000
    i, j = coords.pop()
    ind = i*w + j
    done.add(ind)
    t = data[ind]
    dmin = 255*3
    kmin = 0
    choices = []
    while colors and len(choices) < choose:
        k = len(choices)
        choices.append(randpop(colors))
        c = choices[-1]
        d = sum(abs(t[l] - c[l]) for l in xrange(3))
        if d < dmin:
            dmin = d
            kmin = k
            if d < threshold:
                break
    c = choices.pop(kmin)
    data[ind] = c
    colors.extend(choices)

    # Push the error to nearby pixels for dithering
    if ind + 1 < len(data) and ind + 1 not in done:
        ind2 = ind + 1
    elif ind + w < len(data) and ind + w not in done:
        ind2 = ind + w
    elif ind > 0 and ind - 1 not in done:
        ind2 = ind - 1
    elif ind - w > 0 and ind - w not in done:
        ind2 = ind - w
    else:
        ind2 = None
    if ind2 is not None:
        for k in xrange(3):
            err = abs(t[k] - c[k])
            data[ind2][k] += err

out.putdata(data)
out.save('out.png')

可能な改善:

  • よりスマートな色補正?
  • より良い品質指標?
  • エラーを1つではなく周囲のすべてのピクセルにプッシュします

glyい(1-> 2): 1-> 2

もう少し良い(2-> 1): 2-> 1

まとも(2-> 3): 2-> 3

悪いレイトレーサーのように(3-> 4): 3-> 4

不正行為-上半分のすべての有効なピクセルを使用し、ペイントがなくなったと主張します。 1-> 2


3
最後は…興味深いアイデアです。しかし、まだ賛成ではありません。
ジョン・ドヴォラック

20

Python(kdツリーと輝度を使用)

ナイスチャレンジ。私はkd-treeアプローチを採用することにしました。したがって、kdツリーアプローチを使用する背後にある基本的な考え方は、画像内の存在に応じて色と輝度を分割するということです。

したがって、kdツリーの場合、最初のソートは赤に基づいています。すべての色を2つのほぼ等しい赤のグループ(明るい赤と暗い赤)に分割します。次に、これらの2つのパーティションを緑に沿って分割します。次に青、次に明度、そして再び赤。ツリーが構築されるまで続きます。このアプローチでは、ソースイメージとデスティネーションイメージのkdツリーを構築しました。その後、ソースから宛先にツリーをマッピングし、宛先ファイルの色データを上書きしました。すべての結果がここに表示されます

いくつかの例:

モナリザ->アメリカンゴシック

モナリザ アメリカンゴシック(mona_lisaスタイル)

アメリカンゴシック->モナリザ

ゴシックアメリカ mona_lisa(アメリカのゴシック様式)

星空->スクリーム

星が輝く夜 星空の叫び

スクリーム->星空

悲鳴 悲鳴を上げる星

虹の球

ここに画像の説明を入力してください モナリザボール 悲鳴のボール

@ Calvin's Hobbiesムービーフレームメーカーを使用したショートムービーは次のとおりです。

ここに画像の説明を入力してください

そして今、コードのために:-)

from PIL import Image

""" Computation of hue, saturation, luminosity.
Based on http://stackoverflow.com/questions/3732046/how-do-you-get-the-hue-of-a-xxxxxx-colour
"""
def rgbToLsh(t):
    r = t[0]
    g = t[1]
    b = t[2]
    r /= 255.
    g /= 255.
    b /= 255.
    vmax = max([r, g, b])
    vmin = min([r, g, b]);
    h = s = l = (vmax + vmin) / 2.;

    if (vmax == vmin):
        h = s = 0.  # achromatic
    else:
        d = vmax - vmin;
        if l > 0.5:
            s = d / (2. - vmax - vmin)
        else:
            s = d / (vmax + vmin);
        if vmax == r:
            if g<b: 
                m = 6. 
            else: 
                m = 0. 
            h = (g - b) / d + m
        elif vmax == g: 
            h = (b - r) / d + 2.
        elif vmax == b: 
            h = (r - g) / d + 4.
        h /= 6.;
    return [l,s,h];



""" KDTree implementation.
Based on https://code.google.com/p/python-kdtree/ 
"""
__version__ = "1r11.1.2010"
__all__ = ["KDTree"]

def square_distance(pointA, pointB):
    # squared euclidean distance
    distance = 0
    dimensions = len(pointA) # assumes both points have the same dimensions
    for dimension in range(dimensions):
        distance += (pointA[dimension] - pointB[dimension])**2
    return distance

class KDTreeNode():
    def __init__(self, point, left, right):
        self.point = point
        self.left = left
        self.right = right

    def is_leaf(self):
        return (self.left == None and self.right == None)

class KDTreeNeighbours():
    """ Internal structure used in nearest-neighbours search.
    """
    def __init__(self, query_point, t):
        self.query_point = query_point
        self.t = t # neighbours wanted
        self.largest_distance = 0 # squared
        self.current_best = []

    def calculate_largest(self):
        if self.t >= len(self.current_best):
            self.largest_distance = self.current_best[-1][1]
        else:
            self.largest_distance = self.current_best[self.t-1][1]

    def add(self, point):
        sd = square_distance(point, self.query_point)
        # run through current_best, try to find appropriate place
        for i, e in enumerate(self.current_best):
            if i == self.t:
                return # enough neighbours, this one is farther, let's forget it
            if e[1] > sd:
                self.current_best.insert(i, [point, sd])
                self.calculate_largest()
                return
        # append it to the end otherwise
        self.current_best.append([point, sd])
        self.calculate_largest()

    def get_best(self):
        return [element[0] for element in self.current_best[:self.t]]



class KDTree():
    """ KDTree implementation.

        Example usage:

            from kdtree import KDTree

            data = <load data> # iterable of points (which are also iterable, same length)
            point = <the point of which neighbours we're looking for>

            tree = KDTree.construct_from_data(data)
            nearest = tree.query(point, t=4) # find nearest 4 points
    """

    def __init__(self, data):

        self.data_listing = []
        def build_kdtree(point_list, depth):

            # code based on wikipedia article: http://en.wikipedia.org/wiki/Kd-tree
            if not point_list:
                return None

            # select axis based on depth so that axis cycles through all valid values
            axis = depth % 4 #len(point_list[0]) # assumes all points have the same dimension

            # sort point list and choose median as pivot point,
            # TODO: better selection method, linear-time selection, distribution
            point_list.sort(key=lambda point: point[axis])
            median = len(point_list)/2 # choose median

            # create node and recursively construct subtrees
            node = KDTreeNode(point=point_list[median],
                              left=build_kdtree(point_list[0:median], depth+1),
                              right=build_kdtree(point_list[median+1:], depth+1))

            # add point to listing                   
            self.data_listing.append(point_list[median])
            return node

        self.root_node = build_kdtree(data, depth=0)

    @staticmethod
    def construct_from_data(data):
        tree = KDTree(data)
        return tree

    def query(self, query_point, t=1):
        statistics = {'nodes_visited': 0, 'far_search': 0, 'leafs_reached': 0}

        def nn_search(node, query_point, t, depth, best_neighbours):
            if node == None:
                return

            #statistics['nodes_visited'] += 1

            # if we have reached a leaf, let's add to current best neighbours,
            # (if it's better than the worst one or if there is not enough neighbours)
            if node.is_leaf():
                #statistics['leafs_reached'] += 1
                best_neighbours.add(node.point)
                return

            # this node is no leaf

            # select dimension for comparison (based on current depth)
            axis = depth % len(query_point)

            # figure out which subtree to search
            near_subtree = None # near subtree
            far_subtree = None # far subtree (perhaps we'll have to traverse it as well)

            # compare query_point and point of current node in selected dimension
            # and figure out which subtree is farther than the other
            if query_point[axis] < node.point[axis]:
                near_subtree = node.left
                far_subtree = node.right
            else:
                near_subtree = node.right
                far_subtree = node.left

            # recursively search through the tree until a leaf is found
            nn_search(near_subtree, query_point, t, depth+1, best_neighbours)

            # while unwinding the recursion, check if the current node
            # is closer to query point than the current best,
            # also, until t points have been found, search radius is infinity
            best_neighbours.add(node.point)

            # check whether there could be any points on the other side of the
            # splitting plane that are closer to the query point than the current best
            if (node.point[axis] - query_point[axis])**2 < best_neighbours.largest_distance:
                #statistics['far_search'] += 1
                nn_search(far_subtree, query_point, t, depth+1, best_neighbours)

            return

        # if there's no tree, there's no neighbors
        if self.root_node != None:
            neighbours = KDTreeNeighbours(query_point, t)
            nn_search(self.root_node, query_point, t, depth=0, best_neighbours=neighbours)
            result = neighbours.get_best()
        else:
            result = []

        #print statistics
        return result


#List of files: 
files = ['JXgho.png','N6IGO.png','c5jq1.png','itzIe.png','xPAwA.png','y2VZJ.png']

#Loop over source files 
for im_orig in range(len(files)):
    srch = Image.open(files[im_orig])   #Open file handle 
    src = srch.load();                  #Load file  

    # Build data structure (R,G,B,lum,xpos,ypos) for source file
    srcdata =  [(src[i,j][0],src[i,j][1],src[i,j][2],rgbToLsh(src[i,j])[0],i,j) \
                     for i in range(srch.size[0]) \
                     for j in range(srch.size[1])]  

    # Build kd-tree for source
    srctree = KDTree.construct_from_data(srcdata)

    for im in range(len(files)):
        desh = Image.open(files[im])
        des = desh.load();

        # Build data structure (R,G,B,lum,xpos,ypos) for destination file
        desdata =  [(des[i,j][0],des[i,j][1],des[i,j][2],rgbToLsh(des[i,j]),i,j) \
                     for i in range(desh.size[0]) \
                     for j in range(desh.size[1])]  

        # Build kd-tree for destination
        destree = KDTree.construct_from_data(desdata)

        # Switch file mode
        desh.mode = srch.mode
        for k in range(len(srcdata)):
            # Get locations from kd-tree sorted data
            i   = destree.data_listing[k][-2]
            j   = destree.data_listing[k][-1]
            i_s = srctree.data_listing[k][-2]
            j_s = srctree.data_listing[k][-1]

            # Overwrite original colors with colors from source file 
            des[i,j] = src[i_s,j_s]

        # Save to disk  
        desh.save(files[im_orig].replace('.','_'+`im`+'.'))

私は一年前にこれに気づかなかったが、それはかなり良いです!
ホッブズ

16

Python

ボールを転がし続けるために、ここに私自身のシンプルで痛みを伴う遅い答えがあります。

import Image

def countColors(image):
    colorCounts = {}
    for color in image.getdata():
        if color in colorCounts:
            colorCounts[color] += 1
        else:
            colorCounts[color] = 1
    return colorCounts

def colorDist(c1, c2):
    def ds(c1, c2, i):
        return (c1[i] - c2[i])**2
    return (ds(c1, c2, 0) + ds(c1, c2, 1) + ds(c1, c2, 2))**0.5

def findClosestColor(palette, color):
    closest = None
    minDist = (3*255**2)**0.5
    for c in palette:
        dist = colorDist(color, c)
        if dist < minDist:
            minDist = dist
            closest = c
    return closest

def removeColor(palette, color):
    if palette[color] == 1:
        del palette[color]
    else:
        palette[color] -= 1

def go(paletteFile, sourceFile):
    palette = countColors(Image.open(paletteFile).convert('RGB'))
    source = Image.open(sourceFile).convert('RGB')
    copy = Image.new('RGB', source.size)
    w, h = copy.size

    for x in range(w):
        for y in range(h):
            c = findClosestColor(palette, source.getpixel((x, y)))
            removeColor(palette, c)
            copy.putpixel((x, y), c)
        print x #print progress
    copy.save('copy.png')

#the respective file paths go here
go('../ag.png', '../r.png')

ソース内の各ピクセルについて、RGBカラーキューブに最も近いパレット内の未使用のピクセルを探します。基本的にQuincunxのアルゴリズムと同じですが、ランダム性がなく、色の比較機能が異なります。

画像の右側は、類似した色が不足しているため、細部がはるかに少ないため、左から右に移動するとわかります。

アメリカンゴシックからの川

アメリカンゴシックからの川

レインボースフィアのモナリザ

レインボースフィアのモナリザ


1
うん。リサは少し黄色がかったです...
tomsmeding

4
私は川でアメリカのゴシック様式から左の「いい」から右の「抽象的な」への移行が本当に好きです=)
flawr 14

12

ハスケル

この解決策に着手する前に、最近傍検索を使用していくつかの異なるアプローチを試しました(これは実際に私の最初のアイデアでした)。まず、画像のピクセル形式をYCbCrに変換し、ピクセルデータを含む2つのリストを作成します。次に、輝度値を優先してリストをソートします。その後、入力画像の並べ替えられたピクセルリストをパレット画像に置き換え、元の順序に戻し、それを使用して新しい画像を作成します。

module Main where

import System.Environment    (getArgs)
import System.Exit           (exitSuccess, exitFailure)
import System.Console.GetOpt (getOpt, ArgOrder(..), OptDescr(..), ArgDescr(..))
import Data.List             (sortBy)

import Codec.Picture
import Codec.Picture.Types

import qualified Data.Vector as V

main :: IO ()
main = do
    (ioOpts, _) <- getArgs >>= getOpts
    opts        <- ioOpts
    image       <- loadImage $ imageFile opts
    palette     <- loadImage $ paletteFile opts
    case swapPalette image palette of
      Nothing -> do
          putStrLn "Error: image and palette dimensions do not match"
          exitFailure
      Just img ->
          writePng (outputFile opts) img

swapPalette :: Image PixelYCbCr8 -> Image PixelYCbCr8 -> Maybe (Image PixelRGB8)
swapPalette img pal
    | area1 == area2 =
        let cmpCr (_, (PixelYCbCr8 _ _ r1)) (_, (PixelYCbCr8 _ _ r2)) = r1 `compare` r2
            cmpCb (_, (PixelYCbCr8 _ c1 _)) (_, (PixelYCbCr8 _ c2 _)) = c1 `compare` c2
            cmpY  (_, (PixelYCbCr8 y1 _ _)) (_, (PixelYCbCr8 y2 _ _)) = y2 `compare` y1
            w       = imageWidth  img
            h       = imageHeight img
            imgData = sortBy cmpY $ sortBy cmpCr $ sortBy cmpCb $ zip [1 :: Int ..] $ getPixelList img
            palData = sortBy cmpY $ sortBy cmpCr $ sortBy cmpCb $ zip [1 :: Int ..] $ getPixelList pal
            newData = zipWith (\(n, _) (_, p) -> (n, p)) imgData palData
            pixData = map snd $ sortBy (\(n1, _) (n2, _) -> n1 `compare` n2) newData
            dataVec = V.reverse $ V.fromList pixData
        in  Just $ convertImage $ generateImage (lookupPixel dataVec w h) w h
    | otherwise = Nothing
    where area1 = (imageWidth img) * (imageHeight img)
          area2 = (imageWidth pal) * (imageHeight pal)

lookupPixel :: V.Vector PixelYCbCr8 -> Int -> Int -> Int -> Int -> PixelYCbCr8
lookupPixel vec w h x y = vec V.! i
    where i = flattenIndex w h x y

getPixelList :: Image PixelYCbCr8 -> [PixelYCbCr8]
getPixelList img = foldl (\ps (x, y) -> (pixelAt img x y):ps) [] coords
    where coords = [(x, y) | x <- [0..(imageWidth img) - 1], y <- [0..(imageHeight img) - 1]]

flattenIndex :: Int -> Int -> Int -> Int -> Int
flattenIndex _ h x y = y + (x * h)

-------------------------------------------------
-- Command Line Option Functions
-------------------------------------------------

getOpts :: [String] -> IO (IO Options, [String])
getOpts args = case getOpt Permute options args of
    (opts, nonOpts, []) -> return (foldl (>>=) (return defaultOptions) opts, nonOpts)
    (_, _, errs)        -> do
        putStrLn $ concat errs
        printUsage
        exitFailure

data Options = Options
  { imageFile   :: Maybe FilePath
  , paletteFile :: Maybe FilePath
  , outputFile  :: FilePath
  }

defaultOptions :: Options
defaultOptions = Options
  { imageFile   = Nothing
  , paletteFile = Nothing
  , outputFile  = "out.png"
  }

options :: [OptDescr (Options -> IO Options)]
options = [ Option ['i'] ["image"]   (ReqArg setImage   "FILE") "",
            Option ['p'] ["palette"] (ReqArg setPalette "FILE") "",
            Option ['o'] ["output"]  (ReqArg setOutput  "FILE") "",
            Option ['v'] ["version"] (NoArg showVersion)        "",
            Option ['h'] ["help"]    (NoArg exitPrintUsage)     ""]

setImage :: String -> Options -> IO Options
setImage image opts = return $ opts { imageFile = Just image }

setPalette :: String -> Options -> IO Options
setPalette palette opts = return $ opts { paletteFile = Just palette }

setOutput :: String -> Options -> IO Options
setOutput output opts = return $ opts { outputFile = output }

printUsage :: IO ()
printUsage = do
    putStrLn "Usage: repix [OPTION...] -i IMAGE -p PALETTE [-o OUTPUT]"
    putStrLn "Rearrange pixels in the palette file to closely resemble the given image."
    putStrLn ""
    putStrLn "-i, --image    specify the image to transform"
    putStrLn "-p, --palette  specify the image to use as the palette"
    putStrLn "-o, --output   specify the output image file"
    putStrLn ""
    putStrLn "-v, --version  display version information and exit"
    putStrLn "-h, --help     display this help and exit"

exitPrintUsage :: a -> IO Options
exitPrintUsage _ = do
    printUsage
    exitSuccess

showVersion :: a -> IO Options
showVersion _ = do
    putStrLn "Pixel Rearranger v0.1"
    exitSuccess

-------------------------------------------------
-- Image Loading Util Functions
-------------------------------------------------

loadImage :: Maybe FilePath -> IO (Image PixelYCbCr8)
loadImage Nothing     = do
    printUsage
    exitFailure
loadImage (Just path) = do
    rdImg <- readImage path
    case rdImg of
      Left err -> do
          putStrLn err
          exitFailure
      Right img -> getRGBImage img

getRGBImage :: DynamicImage -> IO (Image PixelYCbCr8)
getRGBImage dynImg =
    case dynImg of
      ImageYCbCr8 img -> return img
      ImageRGB8   img -> return $ convertImage img
      ImageY8     img -> return $ convertImage (promoteImage img :: Image PixelRGB8)
      ImageYA8    img -> return $ convertImage (promoteImage img :: Image PixelRGB8)
      ImageCMYK8  img -> return $ convertImage (convertImage img :: Image PixelRGB8)
      ImageRGBA8  img -> return $ convertImage (pixelMap dropTransparency img :: Image PixelRGB8)
      _               -> do
          putStrLn "Error: incompatible image type."
          exitFailure

結果

私のプログラムが生成する画像は、他の多くのソリューションよりも鮮明ではない傾向があり、大きな固体領域またはグラデーションをうまく処理しません。

フルアルバムへのリンクはこちらです。

アメリカンゴシック->モナリザ

モナリザ->アメリカンゴシック

球体->モナリザ

スクリーム->星空

スクリーム->球


3
私は(スフィア->モナリザ)のディザリングが好きですが、(スクリーム->スフィア)のartifactいアーティファクトはどこにありますか?
ジョンドヴォルザーク

1
アーティファクトは、アルゴリズムがピクセルをソートする方法の副作用です。現時点では、各ピクセルの赤の差は、並べ替えステップの青の差よりも優先されます。つまり、入力画像の類似の色は、パレット画像の非常に異なる色と一致させることができます。ただし、この同じ効果が、Spheres-> Mona Lisaのような画像のディザリングを引き起こすことはほぼ確実であるため、それを維持することにしました。
ChaseC 14

9

Java

Quincunxからの以前のJavaの回答に触発された

     package paletteswap;

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.BitSet;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

import javax.imageio.ImageIO;

public class Test
{
    public static class Bits
    {

        public static BitSet convert( int value )
        {
            BitSet bits = new BitSet();
            int index = 0;
            while ( value != 0L )
            {
                if ( value % 2 != 0 )
                {
                    bits.set( index );
                }
                ++index;
                value = value >>> 1;
            }
            return bits;
        }

        public static int convert( BitSet bits )
        {
            int value = 0;
            for ( int i = 0; i < bits.length(); ++i )
            {
                value += bits.get( i ) ? ( 1 << i ) : 0;
            }
            return value;
        }
    }

    public static void main( String[] args ) throws IOException
    {
        BufferedImage source = ImageIO.read( resource( "river.png" ) ); // My names
                                                                            // for the
                                                                            // files
        BufferedImage palette = ImageIO.read( resource( "farmer.png" ) );
        BufferedImage result = rearrange( source, palette );
        ImageIO.write( result, "png", resource( "result.png" ) );
    }

    public static BufferedImage rearrange( BufferedImage source, BufferedImage palette )
    {
        BufferedImage result = new BufferedImage( source.getWidth(), source.getHeight(), BufferedImage.TYPE_INT_RGB );

        // This creates a list of points in the Source image.
        // Then, we shuffle it and will draw points in that order.
        List<Point> samples = getPoints( source.getWidth(), source.getHeight() );
        Collections.sort( samples, new Comparator<Point>()
        {

            @Override
            public int compare( Point o1, Point o2 )
            {
                int c1 = getRGB( source, o1.x, o1.y );
                int c2 = getRGB( source, o2.x, o2.y );
                return c1 -c2;
            }
        } );

        // Create a list of colors in the palette.
        List<Integer> colors = getColors( palette );

        while ( !samples.isEmpty() )
        {
            Point currentPoint = samples.remove( 0 );
            int sourceAtPoint = getRGB( source, currentPoint.x, currentPoint.y );
            int colorIndex = binarySearch( colors, sourceAtPoint );
            int bestColor = colors.remove( colorIndex );
            setRGB( result, currentPoint.x, currentPoint.y, bestColor );
        }
        return result;
    }

    public static int unpack( int rgbPacked )
    {
        BitSet packed = Bits.convert( rgbPacked );
        BitSet rgb = Bits.convert( 0 );
        for (int i=0; i<8; i++)
        {
            rgb.set( i,    packed.get( i*3 )  );
            rgb.set( i+16,    packed.get( i*3+1 )  );
            rgb.set( i+8,    packed.get( i*3+2 )  );
        }
        return Bits.convert( rgb);
    }

    public static int pack( int rgb )
    {
        int myrgb = rgb & 0x00FFFFFF;

        BitSet bits = Bits.convert( myrgb );
        BitSet packed = Bits.convert( 0 );

        for (int i=0; i<8; i++)
        {
            packed.set( i*3,    bits.get( i )  );
            packed.set( i*3+1,  bits.get( i+16 )  );
            packed.set( i*3+2,  bits.get( i+8 )  );
        }
        return Bits.convert( packed);

    }

    public static int getRGB( BufferedImage image, int x, int y )
    {
        return pack( image.getRGB( x, y ) );
    }

    public static void setRGB( BufferedImage image, int x, int y, int color )
    {
        image.setRGB( x, y, unpack( color ) );
    }

    public static List<Point> getPoints( int width, int height )
    {
        List<Point> points = new ArrayList<>( width * height );
        for ( int x = 0; x < width; x++ )
        {
            for ( int y = 0; y < height; y++ )
            {
                points.add( new Point( x, y ) );
            }
        }
        return points;
    }

    public static List<Integer> getColors( BufferedImage img )
    {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Integer> colors = new ArrayList<>( width * height );
        for ( int x = 0; x < width; x++ )
        {
            for ( int y = 0; y < height; y++ )
            {
                colors.add( getRGB( img, x, y ) );
            }
        }
        Collections.sort( colors );
        return colors;
    }

    public static int binarySearch( List<Integer> toSearch, int obj )
    {
        int index = toSearch.size() >> 1;
        for ( int guessChange = toSearch.size() >> 2; guessChange > 0; guessChange >>= 1 )
        {
            int value = toSearch.get( index );
            if ( obj == value )
            {
                return index;
            }
            else if ( obj < value )
            {
                index -= guessChange;
            }
            else
            {
                index += guessChange;
            }
        }
        return index;
    }

    public static File resource( String fileName )
    { // This method is here solely
        // for my ease of use (I put
        // the files under <Project
        // Name>/Resources/ )
        return new File( System.getProperty( "user.home" ) + "/pictureswap/" + fileName );
    }
}

モナリザ->農民

ここに画像の説明を入力してください

ランダムではなく、強度で置き換える必要があるポイントをソートします。


8

ルビー

概要:

本当に簡単なアプローチですが、かなり良い結果が得られるようです:

  1. パレットとターゲットを用意し、何らかの機能でピクセルを並べ替えます。これらを「参照」配列と呼びます。HSLAで並べ替えることを選択しましたが、色相の彩度よりも輝度を優先します(別名「LSHA」)
  2. ターゲット画像の各ピクセルを反復処理し、ターゲット参照配列内でソートされる場所を見つけ、パレット参照配列内の同じインデックスにソートされたパレットからピクセルを取得して、出力画像を作成します。

コード:

require 'rubygems'
require 'chunky_png'
require 'rmagick' # just for the rgba => hsla converter, feel free to use something lighter-weight you have on hand

def pixel_array_for_image(image)
  # [r, b, g, a]
  image.pixels.map{|p| ChunkyPNG::Color.to_truecolor_alpha_bytes(p)}
end

def sorted_pixel_references(pixel_array)
  pixel_array.map{|a| yield(a)}.map.with_index.sort_by(&:first).map(&:last)
end

def sort_by_lsha(pixel_array)
  sorted_pixel_references(pixel_array) {|p|
    # feel free to drop in any sorting function you want here!
    hsla = Magick::Pixel.new(*p).to_hsla # [h, s, l, a]
    [hsla[2], hsla[1], hsla[0], hsla[3]]
  }
end

def make_target_out_of_palette(target_filename, palette_filename, output_filename)
  puts "making #{target_filename} out of #{palette_filename}"

  palette = ChunkyPNG::Image.from_file(palette_filename)
  target = ChunkyPNG::Image.from_file(target_filename)
  puts "  loaded images"

  palette_array = pixel_array_for_image(palette)
  target_array = pixel_array_for_image(target)
  puts "  have pixel arrays"

  palette_spr = sort_by_lsha(palette_array)
  target_spr = sort_by_lsha(target_array)
  puts "  have sorted-pixel reference arrays"

  output = ChunkyPNG::Image.new(target.dimension.width, target.dimension.height, ChunkyPNG::Color::TRANSPARENT)
  (0...target_array.count).each { |index|
    spr_index = target_spr.index(index)
    index_in_palette = palette_spr[spr_index]
    palette_pixel = palette_array[index_in_palette]
    index_as_x = (index % target.dimension.width)
    index_as_y = (index / target.dimension.width)
    output[index_as_x, index_as_y] = ChunkyPNG::Color.rgba(*palette_pixel)
  }
  output.save(output_filename)
  puts "  saved to #{output_filename}"
end

palette_filename, target_filename, output_filename = ARGV
make_target_out_of_palette(target_filename, palette_filename, output_filename)

結果:

http://imgur.com/a/Iu7Ds

ハイライト:

スクリームから作られた星空 モナリザから作られたアメリカのゴシック 川の写真から作られたモナリザ 星空から作られた川の写真


2
各画像にソースパレットを追加できますか?
PlasmaHH 14

7

Perl

これはかなり単純なアプローチです。MacBook Proで画像ペアごとに100フレームを生成するには、約120 MBのメモリフットプリントで約5秒かかります。

アイデアは、両方のピクセルとパレット画像を24ビットのパックされたRGBで並べ替え、ソースの色をパレットの色で順番に置き換えることです。

#!/usr/bin/env perl

use 5.020; # just because
use strict;
use warnings;

use Const::Fast;
use GD;
GD::Image->trueColor(1);

use Path::Class;

const my $COLOR => 0;
const my $COORDINATES => 1;
const my $RGB => 2;
const my $ANIMATION_FRAMES => 100;

const my %MASK => (
    RED => 0x00ff0000,
    GREEN => 0x0000ff00,
    BLUE => 0x000000ff,
);

run(@ARGV);

sub run {
    unless (@_ == 2) {
        die "Need source and palette images\n";
    }
    my $source_file = file(shift)->resolve;
    my $palette_file = file(shift)->resolve;

    my $source = GD::Image->new("$source_file")
        or die "Failed to create source image from '$source_file'";
    my $palette = GD::Image->new("$palette_file")
        or die "Failed to create palette image from '$palette_file'";

    my %source =  map { $_ => $source->$_ } qw(width height);
    my %palette = map { $_ => $palette->$_ } qw(width height);
    my ($frame_prefix) = ($source_file->basename =~ /\A([^.]+)/);

    unless (
        (my $source_area = $source{width} * $source{height}) <=
        (my $palette_area = $palette{width} * $source{height})
    ) {
        die "Source area ($source_area) is greater than palette area ($palette_area)";
    }

    my ($last_frame, $png) = recreate_source_image_from_palette(
        \%source,
        get_source_pixels( get_pixels_by_color($source, \%source) ),
        get_palette_colors( get_pixels_by_color($palette, \%palette) ),
        sub { save_frame($frame_prefix, @_) }
    );

    save_frame($frame_prefix, $last_frame, $png);
    return;
}

sub save_frame {
    my $frame_prefix = shift;
    my $frame = shift;
    my $png = shift;
    file(
        sprintf("${frame_prefix}-%d.png", $frame)
    )->spew(iomode => '>:raw', $$png);
    return;
}

sub recreate_source_image_from_palette {
    my $dim = shift;
    my $source_pixels = shift;
    my $palette_colors = shift;
    my $callback = shift;
    my $frame = 0;

    my %colors;
    $colors{$_} = undef for @$palette_colors;

    my $gd = GD::Image->new($dim->{width}, $dim->{height}, 1);
    for my $x (keys %colors) {
          $colors{$x} = $gd->colorAllocate(unpack_rgb($x));
    }

    my $period = sprintf '%.0f', @$source_pixels / $ANIMATION_FRAMES;
    for my $i (0 .. $#$source_pixels) {
        $gd->setPixel(
            @{ $source_pixels->[$i] },
            $colors{ $palette_colors->[$i] }
        );
        if ($i % $period == 0) {
            $callback->($frame, \ $gd->png);
            $frame += 1;
        }
    }
    return ($frame, \ $gd->png);
}

sub get_palette_colors { [ map sprintf('%08X', $_->[$COLOR]), @{ $_[0] } ] }

sub get_source_pixels { [ map $_->[$COORDINATES], @{ $_[0] } ] }

sub get_pixels_by_color {
    my $gd = shift;
    my $dim = shift;
    return [
        sort { $a->[$COLOR] <=> $b->[$COLOR] }
        map {
            my $y = $_;
            map {
                [ pack_rgb( $gd->rgb( $gd->getPixel($_, $y) ) ), [$_, $y] ];
            } 0 .. $dim->{width}
        } 0 .. $dim->{height}
    ];
}

sub pack_rgb { $_[0] << 16 | $_[1] << 8 | $_[2] }

sub unpack_rgb {
    my ($r, $g, $b) = map $MASK{$_} & hex($_[0]), qw(RED GREEN BLUE);
    return ($r >> 16, $g >> 8, $b);
}

出力

Starry Nightパレットを使用したスクリーム

Starry Nightパレットを使用したスクリーム

モナリザ色を使用したアメリカンゴシック

モナリザ色を使用したアメリカンゴシック

スクリームカラーを使用したモナリザ

スクリームカラーを使用したモナリザ

ビー玉色を使用した川

ビー玉色を使用した川

アニメーション

私は怠けていたので、YouTubeにアニメーションを掲載しました。モナリザはStarry Nightの色を使用しアメリカンゴシックはモナリザの色を使用しました


7

Python

最近は仕事で頻繁に出回っているので、私はこの小さな機会を利用してコードゴルフを取り上げ、Pythonチョップに取り組む口実としてそれを使用すると思いました。O(n ^ 2)とO(nlog(n))を使用したいくつかのアルゴリズムを含むいくつかのアルゴリズムを実行して、色を最適化しようとしましたが、これは計算コストが高く、実際にはほとんどないことが明らかになりました見かけの結果への影響。したがって、以下は、最も重要な視覚要素(輝度)を妥当な範囲で取得し、クロマをどこにでも着陸させることができるO(n)時間(基本的には私のシステム上で)で動作するものに対して行ったテイクです。

from PIL import Image
def check(palette, copy):
    palette = sorted(palette.getdata())
    copy = sorted(copy.getdata())
    print "Master says it's good!" if copy == palette else "The master disapproves."

def GetLuminance(pixel):
    # Extract the pixel channel data
    b, g, r = pixel
    # and used the standard luminance curve to get luminance.
    return .3*r+.59*g+.11*b

print "Putting pixels on the palette..."
# Open up the image and get all of the pixels out of it. (Memory intensive!)
palette = Image.open("2.png").convert(mode="RGB")

pixelsP = [] # Allocate the array
width,height = palette.size # Unpack the image size
for y in range(height): # Scan the lines
    for x in range(width): # within the line, scan the pixels
        curpixel = palette.getpixel((x,y)) # get the pixel
        pixelsP.append((GetLuminance(curpixel),curpixel)) # and add a (luminance, color) tuple to the array.


# sort the pixels by the calculated luminescence
pixelsP.sort()

print "Getting the reference picture..."
# Open up the image and get all of the pixels out of it. (Memory intensive!)
source = Image.open("6.png").convert(mode="RGB")
pixelsR = [] # Allocate the array
width,height = source.size # Unpack the image size
for y in range(height): # Scan the lines
    for x in range(width): # within the line, scan the pixels
        curpixel = source.getpixel((x,y)) # get the pixel
        pixelsR.append((GetLuminance(curpixel),(x,y))) # and add a (luminance, position) tuple

# Sort the Reference pixels by luminance too
pixelsR.sort()

# Now for the neat observation. Luminance matters more to humans than chromanance,
# given this then we want to match luminance as well as we can. However, we have
# a finite luminance distribution to work with. Since we can't change that, it's best
# just to line the two images up, sorted by luminance, and just simply assign the
# luminance directly. The chrominance will be all kinds of whack, but fixing that
# by way of loose sorting possible chrominance errors takes this algorithm from O(n)
# to O(n^2), which just takes forever (trust me, I've tried it.)

print "Painting reference with palette..."
for p in range(len(pixelsP)): # For each pixel in the palette
    pl,pixel = pixelsP[p] # Grab the pixel from the palette
    l,cord = pixelsR[p] # Grab the location from the reference
    source.putpixel(cord,pixel) # and assign the pallet pixel to the refrence pixels place

print "Applying fixative..."
# save out the result.
source.save("o.png","PNG")

print "Handing it to the master to see if he approves..."
check(palette, source)
print "Done!"

最終結果には、いくつかのきちんとした結果があります。ただし、画像の輝度分布が大幅に異なる場合は、高度化とディザリングを行わずに実行できることはあまりありません。これは、ある時点で行うのが面白いかもしれませんが、簡潔にするためにここでは除外します。

すべて->モナリザ

アメリカンゴシック->モナリザ 星空->モナリザ スクリーム->モナリザ 川->モナリザ 球体->モナリザ

モナリザ->球

モナリザ->球


6

Mathematica-ランダム順列

アイデア

ソース画像で2つのピクセルを選択し、これらの2つのピクセルを交換した場合に宛先画像へのエラーが減少するかどうかを確認します。結果に小さな乱数(-d | + d)を追加して、極小値を回避します。繰り返す。速度を上げるには、一度に10000ピクセルでこれを行います。

これは、マルコフランダムチェーンに少し似ています。シミュレーテッドアニーリングと同様に、最適化プロセス中にランダム性を減らすことはおそらく良いでしょう。

コード

colorSpace = "RGB";
\[Delta] = 0.05;
ClearAll[loadImgur, imgToList, listToImg, improveN, err, rearrange, \
rearrangeImg]
loadImgur[tag_] := 
 RemoveAlphaChannel@
  Import["http://i.stack.imgur.com/" <> tag <> ".png"]
imgToList[img_] := Flatten[ImageData[ColorConvert[img, colorSpace]], 1]
listToImg[u_, w_] := Image[Partition[u, w], ColorSpace -> colorSpace]
err[{x_, y_, z_}] := x^2 + y^2 + z^2
improveN[a_, t_, n_] := Block[{i, j, ai, aj, ti, tj},
  {i, j} = Partition[RandomSample[Range@Length@a, 2 n], n];
  ai = a[[i]];
  aj = a[[j]];
  ti = t[[i]];
  tj = t[[j]];
  ReplacePart[
   a, (#1 -> #3) & @@@ 
    Select[Transpose[{i, 
       err /@ (ai - ti) + err /@ (aj - tj) - err /@ (ai - tj) - 
        err /@ (aj - ti) + RandomReal[\[Delta]^2 {-1, +1}, n], aj}], #[[2]] > 0 &]]
  ]
rearrange[ua_, ub_, iterations_: 100] := Block[{tmp = ua},
  Do[tmp = improveN[tmp, ub, Floor[.1 Length@ua]];, {i, iterations}]; 
  tmp]
rearrangeImg[a_, b_, iterations_: 100] := With[{imgdst = loadImgur[b]},
  listToImg[rearrange[
    RandomSample@imgToList@loadImgur[a],
    imgToList@imgdst, iterations], First@ImageDimensions@imgdst]]
rearrangeImg["JXgho","itzIe"]

結果

モナリザにゴシック。左:LABカラースペースを使用(delta = 0)。右:RBGカラースペースの使用(delta = 0) img7 img8

モナリザにゴシック。左:RGB色空間、デルタ= 0.05。右:RGBカラースペース、delta = 0.15。 img9 img10

次の画像は、RGBカラースペースとデルタ= 0の約3,500,000スワップのアニメーションを示しています。

img1 img2 img3 img4 img5 img6


aditsuのやり方のように見えますが、結果を楽しみにしています。
レイフ14

5

処理

ソースとパレットが並んで表示され、パレットからピクセルが取得されるアニメーションがあります。

int i = chooseIndexIncremental();では、chooseIndex*関数を変更してピクセルの選択順序を確認できます。

int scanRate = 20; // pixels per frame

// image filenames
String source = "N6IGO.png";
String palette = "JXgho.png";

PImage src, pal, res;
int area;
int[] lut;
boolean[] processed;
boolean[] taken;
int count = 0;

void start() {
  //size(800, 600);

  src = loadImage(source);
  pal = loadImage(palette);

  size(src.width + pal.width, max(src.height, pal.height));

  src.loadPixels();
  pal.loadPixels();

  int areaSrc = src.pixels.length;
  int areaPal = pal.pixels.length;

  if (areaSrc != areaPal) {
    println("Areas mismatch: src: " + areaSrc + ", pal: " + areaPal);
    return;
  }

  area = areaSrc;

  println("Area: " + area);

  lut = new color[area];
  taken = new boolean[area];
  processed = new boolean[area];

  randomSeed(1);
}

void draw() {
  background(0);
  image(src, 0, 0);
  image(pal, src.width, 0);

  for (int k = 0; k < scanRate; k ++)
  if (count < area) {
    // choose from chooseIndexRandom, chooseIndexSkip and chooseIndexIncremental
    int i = chooseIndexIncremental();
    process(i);

    processed[i] = true;
    count ++;
  }
}

int chooseIndexRandom() {
  int i = 0;
  do i = (int) random(area); while (processed[i]);
  return i;
}

int chooseIndexSkip(int n) {
  int i = (n * count) % area;
  while (processed[i] || i >= area) i = (int) random(area);
  return i;
}

int chooseIndexIncremental() {
  return count;
}

void process(int i) {
  lut[i] = findPixel(src.pixels[i]);
  taken[lut[i]] = true;

  src.loadPixels();
  src.pixels[i] = pal.pixels[lut[i]];
  src.updatePixels();

  pal.loadPixels();
  pal.pixels[lut[i]] = color(0);
  pal.updatePixels();

  stroke(src.pixels[i]);
  int sy = i / src.width;
  int sx = i % src.width;

  int j = lut[i];
  int py = j / pal.width;
  int px = j % pal.width;
  line(sx, sy, src.width + px, py);
}

int findPixel(color c) {
  int best;
  do best = (int) random(area); while (taken[best]);
  float bestDist = colorDist(c, pal.pixels[best]);

  for (int k = 0; k < area; k ++) {
    if (taken[k]) continue;
    color c1 = pal.pixels[k];
    float dist = colorDist(c, c1);
    if (dist < bestDist) {
      bestDist = dist;
      best = k;
    }
  }
  return best;
}

float colorDist(color c1, color c2) {
  return S(red(c1) - red(c2)) + S(green(c1) - green(c2)) + S(blue(c1) - blue(c2));
}

float S(float x) { return x * x; }

アメリカンゴシック->モナリザ、インクリメンタル

増分

アメリカンゴシック->モナリザ、ランダム

ランダム


2
虹色の球体パレットを使用すると、どのように見えますか?
フィゾーム14

5

Cシャープ

新しい/刺激的なアイデアはありませんが、試してみたいと思いました。単純にピクセルをソートし、色相よりも彩度よりも輝度を優先します。しかし、そのコードは、その価値のために、かなり短いです。

編集:さらに短いバージョンを追加

using System;
using System.Drawing;
using System.Collections.Generic;

class Program
{
    static void Main(string[] args)
    {
        Bitmap sourceImg = new Bitmap("TheScream.png"),
            arrangImg = new Bitmap("StarryNight.png"),
            destImg = new Bitmap(arrangImg.Width, arrangImg.Height);

        List<Pix> sourcePixels = new List<Pix>(), arrangPixels = new List<Pix>();

        for (int i = 0; i < sourceImg.Width; i++)
            for (int j = 0; j < sourceImg.Height; j++)
                sourcePixels.Add(new Pix(sourceImg.GetPixel(i, j), i, j));

        for (int i = 0; i < arrangImg.Width; i++)
            for (int j = 0; j < arrangImg.Height; j++)
                arrangPixels.Add(new Pix(arrangImg.GetPixel(i, j), i, j));

        sourcePixels.Sort();
        arrangPixels.Sort();

        for (int i = 0; i < arrangPixels.Count; i++)
            destImg.SetPixel(arrangPixels[i].x,
                             arrangPixels[i].y,
                             sourcePixels[i].col);

        destImg.Save("output.png");
    }
}

class Pix : IComparable<Pix>
{
    public Color col;
    public int x, y;
    public Pix(Color col, int x, int y)
    {
        this.col = col;
        this.x = x;
        this.y = y;
    }

    public int CompareTo(Pix other)
    {
        return(int)(255 * 255 * 255 * (col.GetBrightness() - other.col.GetBrightness())
                + (255 * (col.GetHue() - other.col.GetHue()))
                + (255 * 255 * (col.GetSaturation() - other.col.GetSaturation())));
    }
}

サンプル:

ここに画像の説明を入力してください

+

ここに画像の説明を入力してください

=

ここに画像の説明を入力してください


5

Java

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class PixelRearrangerMK2 {

    public static void main(String[] args) throws IOException {
        BufferedImage source = ImageIO.read(resource("Raytraced Spheres.png"));
        BufferedImage palette = ImageIO.read(resource("American Gothic.png"));
        BufferedImage result = rearrange(source, palette);
        ImageIO.write(result, "png", resource("result.png"));
        validate(palette, result);
    }

    public static BufferedImage rearrange(BufferedImage source, BufferedImage palette) {
        List<Color> sColors = Color.getColors(source);
        List<Color> pColors = Color.getColors(palette);
        Collections.sort(sColors);
        Collections.sort(pColors);

        BufferedImage result = new BufferedImage(source.getWidth(), source.getHeight(), BufferedImage.TYPE_INT_RGB);
        Iterator<Color> sIter = sColors.iterator();
        Iterator<Color> pIter = pColors.iterator();

        while (sIter.hasNext()) {
            Color s = sIter.next();
            Color p = pIter.next();

            result.setRGB(s.x, s.y, p.rgb);
        }
        return result;
    }

    public static class Color implements Comparable {
        int x, y;
        int rgb;
        double hue;

        private int r, g, b;

        public Color(int x, int y, int rgb) {
            this.x = x;
            this.y = y;
            this.rgb = rgb;
            r = (rgb & 0xFF0000) >> 16;
            g = (rgb & 0x00FF00) >> 8;
            b = rgb & 0x0000FF;
            hue = Math.atan2(Math.sqrt(3) * (g - b), 2 * r - g - b);
        }

        @Override
        public int compareTo(Object o) {
            Color c = (Color) o;
            return hue < c.hue ? -1 : hue == c.hue ? 0 : 1;
        }

        public static List<Color> getColors(BufferedImage img) {
            List<Color> result = new ArrayList<>();
            for (int y = 0; y < img.getHeight(); y++) {
                for (int x = 0; x < img.getWidth(); x++) {
                    result.add(new Color(x, y, img.getRGB(x, y)));
                }
            }
            return result;
        }
    }

    //Validation and util methods follow
    public static void validate(BufferedImage palette, BufferedImage result) {
        List<Integer> paletteColors = getColorsAsInt(palette);
        List<Integer> resultColors = getColorsAsInt(result);
        Collections.sort(paletteColors);
        Collections.sort(resultColors);
        System.out.println(paletteColors.equals(resultColors));
    }

    public static List<Integer> getColorsAsInt(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Integer> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(img.getRGB(x, y));
            }
        }
        Collections.sort(colors);
        return colors;
    }

    public static File resource(String fileName) {
        return new File(System.getProperty("user.dir") + "/Resources/" + fileName);
    }
}

これはまったく別のアイデアです。各画像の色のリストを作成し、ウィキペディアの式で計算される色相に従ってソートします。

ここに画像の説明を入力してください

私の他の答えとは異なり、これは非常に高速です。検証を含めて、約2秒かかります。

その結果、抽象芸術が生まれます。以下にいくつかの画像を示します(マウスで表示/非表示):

ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください


5
プレデターがo_Oを目にするもののように見える
14

これらはかなり怖いですが、確かに正しいです!
カルビンの趣味14

1
@ Calvin'sHobbiesどうして怖いの?私はそれを美と呼びます。
ジャスティン14

3
彼らの顔は空白で不気味です...しかし、彼らは忘れられない美しさを持っています。
カルビンの趣味14

1
球体は素晴らしいです。
siledh 14

5

Python

それで、時間を費やしたので、ソリューションを投稿することも決めました。基本的に、私がやろうと思ったのは、画像の生のピクセルデータを取得し、明るさでデータをソートしてから、同じインデックスの値を新しい画像に入れることです。明るさについて考えを変え、代わりに輝度を使用しました。これでかなり良い結果が得られました。

from PIL import Image
from optparse import OptionParser


def key_func(arr):
    # Sort the pixels by luminance
    r = 0.2126*arr[0] + 0.7152*arr[1] + 0.0722*arr[2]
    return r


def main():
    # Parse options from the command line
    parser = OptionParser()
    parser.add_option("-p", "--pixels", dest="pixels",
                      help="use pixels from FILE", metavar="FILE")
    parser.add_option("-i", "--input", dest="input", metavar="FILE",
                      help="recreate FILE")
    parser.add_option("-o", "--out", dest="output", metavar="FILE",
                      help="output to FILE", default="output.png")

    (options, args) = parser.parse_args()

    if not options.pixels or not options.input:
        raise Exception("Missing arguments. See help for more info.")

    # Load the images
    im1 = Image.open(options.pixels)
    im2 = Image.open(options.input)

    # Get the images into lists
    px1 = list(im1.getdata())
    px2 = list(im2.getdata())
    w1, h1 = im1.size
    w2, h2 = im2.size

    if w1*h1 != w2*h2:
        raise Exception("Images must have the same number of pixels.")

    # Sort the pixels lists by luminance
    px1_s = sorted(px1, key=key_func)
    px2_s = sorted(px2, key=key_func)

    # Create an array of nothing but black pixels
    arr = [(0, 0, 0)]*w2*h2

    # Create a dict that contains a list of locations with pixel value as key
    # This speeds up the process a lot, since before it was O(n^2)
    locations_cache = {}
    for index, val in enumerate(px2):
        v = str(val)
        if v in locations_cache:
            locations_cache[v].append(index)
        else:
            locations_cache[v] = [index]

    # Loop through each value of the sorted pixels
    for index, val in enumerate(px2_s):
        # Find the original location of the pixel
        # v = px2.index(val)
        v = locations_cache[str(val)].pop(0)
        # Set the value of the array at the given location to the pixel of the
        # equivalent luminance from the source image
        arr[v] = px1_s[index]
        # v2 = px1.index(px1_s[index])
        # Set the value of px2 to an arbitrary value outside of the RGB range
        # This prevents duplicate pixel locations
        # I would use "del px2[v]", but it wouldn't work for some reason
        px2[v] = (512, 512, 512)
        # px1[v2] = (512, 512, 512)
        # Print the percent progress
        print("%f%%" % (index/len(px2)*100))
        """if index % 500 == 0 or index == len(px2_s)-1:
            if h1 > h2:
                size = (w1+w2, h1)
            else:
                size = (w1+w2, h2)
            temp_im1 = Image.new("RGB", im2.size)
            temp_im1.putdata(arr)

            temp_im2 = Image.new("RGB", im1.size)
            temp_im2.putdata(px1)

            temp_im3 = Image.new("RGB", size)
            temp_im3.paste(temp_im1, (0, 0))
            temp_im3.paste(temp_im2, (w2, 0))
            temp_im3.save("still_frames/img_%04d.png" % (index/500))"""

    # Save the image
    im3 = Image.new('RGB', im2.size)
    im3.putdata(arr)
    im3.save(options.output)

if __name__ == '__main__':
    main()

結果

結果にはかなり満足していました。それは私がそれを通して入れたすべての画像に対して一貫して機能するように思われました。

スクリームピクセルの星空

スクリーム+スターリーナイト

レインボーピクセルの星空

虹+星空

星空ピクセルと虹

星空+虹

スクリームピクセルとモナリザ

スクリーム+モナリザ

星空ピクセルの川

星空+川

アメリカのゴシックピクセルとモナリザ

ゴシック+モナリザ

シェビーピクセル付きマスタング

ハードウェアの制約を考えると、おそらくイメージを縮小する必要がありましたが、まあまあです。

シボレー+マスタング

マスタングピクセルとシボレー

マスタング+シェビー

虹のピクセルを持つ川

レインボー+リバー

虹のピクセルを持つモナリザ

レインボー+モナリザ

レインボーピクセルとアメリカンゴシック

レインボー+ゴシック


更新私はさらにいくつかの写真を追加しました、そしてここにいくつかのアニメーションがあります。最初のメソッドは私のメソッドがどのように機能するかを示し、2番目は@ Calvin'sHobbiesが投稿したスクリプトを使用しています。

私の方法

@ Calvin'sHobbiesスクリプト


更新2色ごとにピクセルのインデックスを格納する辞書を追加しました。これにより、スクリプトがより効率的になりました。オリジナルを見るには、改訂履歴を確認してください。


5

C ++ 11

最終的に、私は比較的単純な決定論的欲張りアルゴリズムに落ち着きました。これはシングルスレッドですが、私のマシンでは4秒以上髪の毛で動きます。

基本的なアルゴリズムは、輝度(L a b *の L)を下げることで、パレットとターゲットイメージの両方のすべてのピクセルを並べ替えることによって機能します。次に、それらの順序付けられたターゲットピクセルごとに、パレットの最初の75エントリで最も近い一致を検索します。CIEDE2000距離メトリックの2乗を使用して、パレットの色の輝度をターゲットの輝度に固定します。(CIEDE2000の実装とデバッグについては、このページは非常に役に立ちました)。次に、最適な一致がパレットから削除され、結果に割り当てられ、アルゴリズムはターゲット画像の次に軽いピクセルに進みます。

ターゲットとパレットの両方にソートされた輝度を使用することにより、結果の全体的な輝度(最も視覚的に顕著な要素)がターゲットに可能な限り一致するようにします。75エントリの小さなウィンドウを使用すると、適切な明るさ(存在する場合)に近い色を見つけるのに役立ちます。ない場合、色はオフになりますが、少なくとも明るさは一定でなければなりません。その結果、パレットの色がうまく一致しない場合、かなり優雅に低下します。

コード

これをコンパイルするには、ImageMagick ++開発ライブラリが必要です。コンパイルするための小さなCMakeファイルも以下に含まれています。

palette.cpp

#include <Magick++.h>
#include <algorithm>
#include <functional>
#include <utility>
#include <set>

using namespace std;
using namespace Magick;

struct Lab
{
    PixelPacket rgb;
    float L, a, b;

    explicit Lab(
        PixelPacket rgb )
        : rgb( rgb )
    {
        auto R_srgb = static_cast< float >( rgb.red ) / QuantumRange;
        auto G_srgb = static_cast< float >( rgb.green ) / QuantumRange;
        auto B_srgb = static_cast< float >( rgb.blue ) / QuantumRange;
        auto R_lin = R_srgb < 0.04045f ? R_srgb / 12.92f :
            powf( ( R_srgb + 0.055f ) / 1.055f, 2.4f );
        auto G_lin = G_srgb < 0.04045f ? G_srgb / 12.92f :
            powf( ( G_srgb + 0.055f ) / 1.055f, 2.4f );
        auto B_lin = B_srgb < 0.04045f ? B_srgb / 12.92f :
            powf( ( B_srgb + 0.055f ) / 1.055f, 2.4f );
        auto X = 0.4124f * R_lin + 0.3576f * G_lin + 0.1805f * B_lin;
        auto Y = 0.2126f * R_lin + 0.7152f * G_lin + 0.0722f * B_lin;
        auto Z = 0.0193f * R_lin + 0.1192f * G_lin + 0.9502f * B_lin;
        auto X_norm = X / 0.9505f;
        auto Y_norm = Y / 1.0000f;
        auto Z_norm = Z / 1.0890f;
        auto fX = ( X_norm > 216.0f / 24389.0f ?
                    powf( X_norm, 1.0f / 3.0f ) :
                    X_norm * ( 841.0f / 108.0f ) + 4.0f / 29.0f );
        auto fY = ( Y_norm > 216.0f / 24389.0f ?
                    powf( Y_norm, 1.0f / 3.0f ) :
                    Y_norm * ( 841.0f / 108.0f ) + 4.0f / 29.0f );
        auto fZ = ( Z_norm > 216.0f / 24389.0f ?
                    powf( Z_norm, 1.0f / 3.0f ) :
                    Z_norm * ( 841.0f / 108.0f ) + 4.0f / 29.0f );
        L = 116.0f * fY - 16.0f;
        a = 500.0f * ( fX - fY );
        b = 200.0f * ( fY - fZ );
    }

    bool operator<(
        Lab const that ) const
    {
        return ( L > that.L ? true :
                 L < that.L ? false :
                 a > that.a ? true :
                 a < that.a ? false :
                 b > that.b );
    }

    Lab clampL(
        Lab const that ) const
    {
        auto result = Lab( *this );
        if ( result.L > that.L )
            result.L = that.L;
        return result;
    }

    float cieDe2000(
        Lab const that,
        float const k_L = 1.0f,
        float const k_C = 1.0f,
        float const k_H = 1.0f ) const
    {
        auto square = []( float value ){ return value * value; };
        auto degs = []( float rad ){ return rad * 180.0f / 3.14159265359f; };
        auto rads = []( float deg ){ return deg * 3.14159265359f / 180.0f; };
        auto C_1 = hypot( a, b );
        auto C_2 = hypot( that.a, that.b );
        auto C_bar = ( C_1 + C_2 ) * 0.5f;
        auto C_bar_7th = square( square( C_bar ) ) * square( C_bar ) * C_bar;
        auto G = 0.5f * ( 1.0f - sqrtf( C_bar_7th / ( C_bar_7th + 610351562.0f ) ) );
        auto a_1_prime = ( 1.0f + G ) * a;
        auto a_2_prime = ( 1.0f + G ) * that.a;
        auto C_1_prime = hypot( a_1_prime, b );
        auto C_2_prime = hypot( a_2_prime, that.b );
        auto h_1_prime = C_1_prime == 0.0f ? 0.0f : degs( atan2f( b, a_1_prime ) );
        if ( h_1_prime < 0.0f )
            h_1_prime += 360.0f;
        auto h_2_prime = C_2_prime == 0.0f ? 0.0f : degs( atan2f( that.b, a_2_prime ) );
        if ( h_2_prime < 0.0f )
            h_2_prime += 360.0f;
        auto delta_L_prime = that.L - L;
        auto delta_C_prime = C_2_prime - C_1_prime;
        auto delta_h_prime =
            C_1_prime * C_2_prime == 0.0f ? 0 :
            fabs( h_2_prime - h_1_prime ) <= 180.0f ? h_2_prime - h_1_prime :
            h_2_prime - h_1_prime > 180.0f ? h_2_prime - h_1_prime - 360.0f :
            h_2_prime - h_1_prime + 360.0f;
        auto delta_H_prime = 2.0f * sqrtf( C_1_prime * C_2_prime ) *
            sinf( rads( delta_h_prime * 0.5f ) );
        auto L_bar_prime = ( L + that.L ) * 0.5f;
        auto C_bar_prime = ( C_1_prime + C_2_prime ) * 0.5f;
        auto h_bar_prime =
            C_1_prime * C_2_prime == 0.0f ? h_1_prime + h_2_prime :
            fabs( h_1_prime - h_2_prime ) <= 180.0f ? ( h_1_prime + h_2_prime ) * 0.5f :
            h_1_prime + h_2_prime < 360.0f ? ( h_1_prime + h_2_prime + 360.0f ) * 0.5f :
            ( h_1_prime + h_2_prime - 360.0f ) * 0.5f;
        auto T = ( 1.0f
                   - 0.17f * cosf( rads( h_bar_prime - 30.0f ) )
                   + 0.24f * cosf( rads( 2.0f * h_bar_prime ) )
                   + 0.32f * cosf( rads( 3.0f * h_bar_prime + 6.0f ) )
                   - 0.20f * cosf( rads( 4.0f * h_bar_prime - 63.0f ) ) );
        auto delta_theta = 30.0f * expf( -square( ( h_bar_prime - 275.0f ) / 25.0f ) );
        auto C_bar_prime_7th = square( square( C_bar_prime ) ) *
            square( C_bar_prime ) * C_bar_prime;
        auto R_C = 2.0f * sqrtf( C_bar_prime_7th / ( C_bar_prime_7th + 610351562.0f ) );
        auto S_L = 1.0f + ( 0.015f * square( L_bar_prime - 50.0f ) /
                            sqrtf( 20.0f + square( L_bar_prime - 50.0f ) ) );
        auto S_C = 1.0f + 0.045f * C_bar_prime;
        auto S_H = 1.0f + 0.015f * C_bar_prime * T;
        auto R_T = -sinf( rads( 2.0f * delta_theta ) ) * R_C;
        return (
            square( delta_L_prime / ( k_L * S_L ) ) +
            square( delta_C_prime / ( k_C * S_C ) ) +
            square( delta_H_prime / ( k_H * S_H ) ) +
            R_T * delta_C_prime * delta_H_prime / ( k_C * S_C * k_H * S_H ) );
    }

};

Image read_image(
    char * const filename )
{
    auto result = Image( filename );
    result.type( TrueColorType );
    result.matte( true );
    result.backgroundColor( Color( 0, 0, 0, QuantumRange ) );
    return result;
}

template< typename T >
multiset< T > map_image(
    Image const &image,
    function< T( unsigned, PixelPacket ) > const transform )
{
    auto width = image.size().width();
    auto height = image.size().height();
    auto result = multiset< T >();
    auto pixels = image.getConstPixels( 0, 0, width, height );
    for ( auto index = 0; index < width * height; ++index, ++pixels )
        result.emplace( transform( index, *pixels ) );
    return result;
}

int main(
    int argc,
    char **argv )
{
    auto palette = map_image(
        read_image( argv[ 1 ] ),
        function< Lab( unsigned, PixelPacket ) >(
            []( unsigned index, PixelPacket rgb ) {
                return Lab( rgb );
            } ) );

    auto target_image = read_image( argv[ 2 ] );
    auto target_colors = map_image(
        target_image,
        function< pair< Lab, unsigned >( unsigned, PixelPacket ) >(
            []( unsigned index, PixelPacket rgb ) {
                return make_pair( Lab( rgb ), index );
            } ) );

    auto pixels = target_image.setPixels(
        0, 0,
        target_image.size().width(),
        target_image.size().height() );
    for ( auto &&target : target_colors )
    {
        auto best_color = palette.begin();
        auto best_difference = 1.0e38f;
        auto count = 0;
        for ( auto candidate = palette.begin();
              candidate != palette.end() && count < 75;
              ++candidate, ++count )
        {
            auto difference = target.first.cieDe2000(
                candidate->clampL( target.first ) );
            if ( difference < best_difference )
            {
                best_color = candidate;
                best_difference = difference;
            }
        }
        pixels[ target.second ] = best_color->rgb;
        palette.erase( best_color );
    }
    target_image.syncPixels();
    target_image.write( argv[ 3 ] );

    return 0;
}

CMakeList.txt

cmake_minimum_required( VERSION 2.8.11 )
project( palette )
add_executable( palette palette.cpp)
find_package( ImageMagick COMPONENTS Magick++ )
if( ImageMagick_FOUND )
    include_directories( ${ImageMagick_INCLUDE_DIRS} )
    target_link_libraries( palette ${ImageMagick_LIBRARIES} )
endif( ImageMagick_FOUND )

結果

完全なアルバムはこちらです。 以下の結果のうち、私のお気に入りはおそらく、モナリザパレットのあるアメリカンゴシックと、スフィアパレットのある星空です。

アメリカンゴシックパレット

モナリザパレット

リバーパレット

スクリームパレット

球体パレット

星空パレット


これは素晴らしいですね!これをどれだけ高速化できると思いますか?リアルタイム、つまり平均的なハードウェアで60fpsの可能性はありますか?
ダニジャー14年

4

C ++

最短のコードではありませんが、シングルスレッドで最適化されていないにもかかわらず、「即座に」答えを生成します。結果に満足しています。

ピクセルの2つの並べ替えられたリストを生成します。各画像に1つずつ、並べ替えは「明るさ」の重み付け値に基づいています。100%の緑、50%の赤、10%の青を使用して明るさを計算し、人間の目(多かれ少なかれ)に重み付けします。次に、ソースイメージ内のピクセルをパレットイメージ内の同じインデックスピクセルと交換し、宛先イメージを書き出します。

FreeImageライブラリを使用して、画像ファイルの読み取り/書き込みを行います。

コード

/* Inputs: 2 image files of same area
Outputs: image1 made from pixels of image2*/
#include <iostream>
#include <stdlib.h>
#include "FreeImage.h"
#include <vector>
#include <algorithm>

class pixel
{
public:
    int x, y;
    BYTE r, g, b;
    float val;  //color value; weighted 'brightness'
};

bool sortByColorVal(const pixel &lhs, const pixel &rhs) { return lhs.val > rhs.val; }

FIBITMAP* GenericLoader(const char* lpszPathName, int flag) 
{
    FREE_IMAGE_FORMAT fif = FIF_UNKNOWN;

    // check the file signature and deduce its format
    // (the second argument is currently not used by FreeImage)
    fif = FreeImage_GetFileType(lpszPathName, 0);
    if (fif == FIF_UNKNOWN) 
    {
        // no signature ?
        // try to guess the file format from the file extension
        fif = FreeImage_GetFIFFromFilename(lpszPathName);
    }
    // check that the plugin has reading capabilities ...
    if ((fif != FIF_UNKNOWN) && FreeImage_FIFSupportsReading(fif)) 
    {
        // ok, let's load the file
        FIBITMAP *dib = FreeImage_Load(fif, lpszPathName, flag);
        // unless a bad file format, we are done !
        return dib;
    }
    return NULL;
}

bool GenericWriter(FIBITMAP* dib, const char* lpszPathName, int flag) 
{
    FREE_IMAGE_FORMAT fif = FIF_UNKNOWN;
    BOOL bSuccess = FALSE;

    if (dib) 
    {
        // try to guess the file format from the file extension
        fif = FreeImage_GetFIFFromFilename(lpszPathName);
        if (fif != FIF_UNKNOWN) 
        {
            // check that the plugin has sufficient writing and export capabilities ...
            WORD bpp = FreeImage_GetBPP(dib);
            if (FreeImage_FIFSupportsWriting(fif) && FreeImage_FIFSupportsExportBPP(fif, bpp)) 
            {
                // ok, we can save the file
                bSuccess = FreeImage_Save(fif, dib, lpszPathName, flag);
                // unless an abnormal bug, we are done !
            }
        }
    }
    return (bSuccess == TRUE) ? true : false;
}

void FreeImageErrorHandler(FREE_IMAGE_FORMAT fif, const char *message) 
{
    std::cout << std::endl << "*** ";
    if (fif != FIF_UNKNOWN) 
    {
        std::cout << "ERROR: " << FreeImage_GetFormatFromFIF(fif) << " Format" << std::endl;
    }
    std::cout << message;
    std::cout << " ***" << std::endl;
}

FIBITMAP* Convert24BPP(FIBITMAP* dib)
{
    if (FreeImage_GetBPP(dib) == 24) return dib;

    FIBITMAP *dib2 = FreeImage_ConvertTo24Bits(dib);
    FreeImage_Unload(dib);
    return dib2;
}
// ----------------------------------------------------------

int main(int argc, char **argv)
{
    // call this ONLY when linking with FreeImage as a static library
#ifdef FREEIMAGE_LIB
    FreeImage_Initialise();
#endif

    FIBITMAP *src = NULL, *pal = NULL;
    int result = EXIT_FAILURE;

    // initialize my own FreeImage error handler
    FreeImage_SetOutputMessage(FreeImageErrorHandler);

    // print version
    std::cout << "FreeImage version : " << FreeImage_GetVersion() << std::endl;

    if (argc != 4) 
    {
        std::cout << "USAGE : Pic2Pic <source image> <palette image> <output file name>" << std::endl;
        return EXIT_FAILURE;
    }

    // Load the src image
    src = GenericLoader(argv[1], 0);
    if (src) 
    {
        // load the palette image
        pal = GenericLoader(argv[2], 0);

        if (pal) 
        {
            //compare areas
            // if(!samearea) return EXIT_FAILURE;
            unsigned int width_src = FreeImage_GetWidth(src);
            unsigned int height_src = FreeImage_GetHeight(src);
            unsigned int width_pal = FreeImage_GetWidth(pal);
            unsigned int height_pal = FreeImage_GetHeight(pal);

            if (width_src * height_src != width_pal * height_pal)
            {
                std::cout << "ERROR: source and palette images do not have the same pixel area." << std::endl;
                result = EXIT_FAILURE;
            }
            else
            {
                //go to work!

                //first make sure everything is 24 bit:
                src = Convert24BPP(src);
                pal = Convert24BPP(pal);

                //retrieve the image data
                BYTE *bits_src = FreeImage_GetBits(src);
                BYTE *bits_pal = FreeImage_GetBits(pal);

                //make destination image
                FIBITMAP *dst = FreeImage_ConvertTo24Bits(src);
                BYTE *bits_dst = FreeImage_GetBits(dst);

                //make a vector of all the src pixels that we can sort by color value
                std::vector<pixel> src_pixels;
                for (unsigned int y = 0; y < height_src; ++y)
                {
                    for (unsigned int x = 0; x < width_src; ++x)
                    {
                        pixel p;
                        p.x = x;
                        p.y = y;

                        p.b = bits_src[y*width_src * 3 + x * 3];
                        p.g = bits_src[y*width_src * 3 + x * 3 + 1];
                        p.r = bits_src[y*width_src * 3 + x * 3 + 2];

                        //calculate color value using a weighted brightness for each channel
                        //p.val = 0.2126f * p.r + 0.7152f * p.g + 0.0722f * p.b; //from http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html
                        p.val = 0.5f * p.r + p.g + 0.1f * p.b;                      

                        src_pixels.push_back(p);
                    }
                }

                //sort by color value
                std::sort(src_pixels.begin(), src_pixels.end(), sortByColorVal);

                //make a vector of all palette pixels we can use
                std::vector<pixel> pal_pixels;

                for (unsigned int y = 0; y < height_pal; ++y)
                {
                    for (unsigned int x = 0; x < width_pal; ++x)
                    {
                        pixel p;

                        p.b = bits_pal[y*width_pal * 3 + x * 3];
                        p.g = bits_pal[y*width_pal * 3 + x * 3 + 1];
                        p.r = bits_pal[y*width_pal * 3 + x * 3 + 2];

                        p.val = 0.5f * p.r + p.g + 0.1f * p.b;

                        pal_pixels.push_back(p);
                    }
                }

                //sort by color value
                std::sort(pal_pixels.begin(), pal_pixels.end(), sortByColorVal);

                //for each src pixel, match it with same index palette pixel and copy to destination
                for (unsigned int i = 0; i < width_src * height_src; ++i)
                {
                    bits_dst[src_pixels[i].y * width_src * 3 + src_pixels[i].x * 3] = pal_pixels[i].b;
                    bits_dst[src_pixels[i].y * width_src * 3 + src_pixels[i].x * 3 + 1] = pal_pixels[i].g;
                    bits_dst[src_pixels[i].y * width_src * 3 + src_pixels[i].x * 3 + 2] = pal_pixels[i].r;
                }

                // Save the destination image
                bool bSuccess = GenericWriter(dst, argv[3], 0);
                if (!bSuccess)
                {
                    std::cout << "ERROR: unable to save " << argv[3] << std::endl;
                    std::cout << "This format does not support 24-bit images" << std::endl;
                    result = EXIT_FAILURE;
                }
                else result = EXIT_SUCCESS;

                FreeImage_Unload(dst);
            }

            // Free pal
            FreeImage_Unload(pal);
        }

        // Free src
        FreeImage_Unload(src);
    }

#ifdef FREEIMAGE_LIB
    FreeImage_DeInitialise();
#endif

    if (result == EXIT_SUCCESS) std::cout << "SUCCESS!" << std::endl;
    else std::cout << "FAILURE!" << std::endl;
    return result;
}

結果

モナリザパレットを使用したアメリカンゴシック モナリザパレットを使用した レインボーパレットを使用したアメリカンゴシック アメリカンゴシックレインボーパレットを使用したアメリカンゴシック スクリームパレットを使用したモナリザ スクリームパレット レインボーパレットを使用したモナリザ を使用したモナリザ Starry Nightパレットを使用したスクリーム 星空の夜パレットを使用したスクリーム


4

C#

ポイントは、ランダムなウォーキングで、中心から順番に並べられます。パレット画像で常に最も近い色を取得します。したがって、最後のピクセルはやや非常に悪いです。

結果

ゴシックパレット

ここに画像の説明を入力してください

ここに画像の説明を入力してください

ウィキペディアからアメリカ人カップルの訪問者

ここに画像の説明を入力してください

モナパレット

ここに画像の説明を入力してください

ここに画像の説明を入力してください

ここに画像の説明を入力してください

コード:

理由はわかりませんが、コードはかなり遅いです...

public class PixelExchanger
{
    public class ProgressInfo
    {
        public readonly Pixel NewPixel;
        public readonly int Percentage;

        public ProgressInfo(Pixel newPixel, int percentage)
        {
            this.NewPixel = newPixel;
            this.Percentage = percentage;
        }
    }

    public class Pixel
    {
        public readonly int X;
        public readonly int Y;
        public readonly Color Color;

        public Pixel(int x, int y, Color color)
        {
            this.X = x;
            this.Y = y;
            this.Color = color;
        }
    }

    private static Random r = new Random(0);

    private readonly Bitmap Pallete;
    private readonly Bitmap Image;

    private readonly int Width;
    private readonly int Height;

    private readonly Action<ProgressInfo> ProgressCallback;
    private System.Drawing.Image image1;
    private System.Drawing.Image image2;

    private int Area { get { return Width * Height; } }

    public PixelExchanger(Bitmap pallete, Bitmap image, Action<ProgressInfo> progressCallback = null)
    {
        this.Pallete = pallete;
        this.Image = image;

        this.ProgressCallback = progressCallback;

        Width = image.Width;
        Height = image.Height;

        if (Area != pallete.Width * pallete.Height)
            throw new ArgumentException("Image and Pallete have different areas!");
    }

    public Bitmap DoWork()
    {
        var array = GetColorArray();
        var map = GetColorMap(Image);
        var newMap = Go(array, map);

        var bm = new Bitmap(map.Length, map[0].Length);

        for (int i = 0; i < Width; i++)
        {
            for (int j = 0; j < Height; j++)
            {
                bm.SetPixel(i, j, newMap[i][j]);
            }
        }

        return bm;
    }

    public Color[][] Go(List<Color> array, Color[][] map)
    {
        var centralPoint = new Point(Width / 2, Height / 2);

        var q = OrderRandomWalking(centralPoint).ToArray();

        Color[][] newMap = new Color[map.Length][];
        for (int i = 0; i < map.Length; i++)
        {
            newMap[i] = new Color[map[i].Length];
        }

        double pointsDone = 0;

        foreach (var p in q)
        {
            newMap[p.X][p.Y] = Closest(array, map[p.X][p.Y]);

            pointsDone++;

            if (ProgressCallback != null)
            {
                var percent = 100 * (pointsDone / (double)Area);

                var progressInfo = new ProgressInfo(new Pixel(p.X, p.Y, newMap[p.X][p.Y]), (int)percent);

                ProgressCallback(progressInfo);
            }
        }

        return newMap;
    }

    private int[][] GetCardinals()
    {
        int[] nn = new int[] { -1, +0 };
        // int[] ne = new int[] { -1, +1 };
        int[] ee = new int[] { +0, +1 };
        // int[] se = new int[] { +1, +1 };
        int[] ss = new int[] { +1, +0 };
        // int[] sw = new int[] { +1, -1 };
        int[] ww = new int[] { +0, -1 };
        // int[] nw = new int[] { -1, -1 };

        var dirs = new List<int[]>();

        dirs.Add(nn);
        // dirs.Add(ne);
        dirs.Add(ee);
        // dirs.Add(se);
        dirs.Add(ss);
        // dirs.Add(sw);
        dirs.Add(ww);
        // dirs.Add(nw);

        return dirs.ToArray();
    }

    private Color Closest(List<Color> array, Color c)
    {
        int closestIndex = -1;

        int bestD = int.MaxValue;

        int[] ds = new int[array.Count];
        Parallel.For(0, array.Count, (i, state) =>
        {
            ds[i] = Distance(array[i], c);

            if (ds[i] <= 50)
            {
                closestIndex = i;
                state.Break();
            }
            else if (bestD > ds[i])
            {
                bestD = ds[i];
                closestIndex = i;
            }
        });

        var closestColor = array[closestIndex];

        array.RemoveAt(closestIndex);

        return closestColor;
    }

    private int Distance(Color c1, Color c2)
    {
        var r = Math.Abs(c1.R - c2.R);
        var g = Math.Abs(c1.G - c2.G);
        var b = Math.Abs(c1.B - c2.B);
        var s = Math.Abs(c1.GetSaturation() - c1.GetSaturation());

        return (int)s + r + g + b;
    }

    private HashSet<Point> OrderRandomWalking(Point p)
    {
        var points = new HashSet<Point>();

        var dirs = GetCardinals();
        var dir = new int[] { 0, 0 };

        while (points.Count < Width * Height)
        {
            bool inWidthBound = p.X + dir[0] < Width && p.X + dir[0] >= 0;
            bool inHeightBound = p.Y + dir[1] < Height && p.Y + dir[1] >= 0;

            if (inWidthBound && inHeightBound)
            {
                p.X += dir[0];
                p.Y += dir[1];

                points.Add(p);
            }

            dir = dirs.Random(r);
        }

        return points;
    }

    private static Color[][] GetColorMap(Bitmap b1)
    {
        int hight = b1.Height;
        int width = b1.Width;

        Color[][] colorMatrix = new Color[width][];
        for (int i = 0; i < width; i++)
        {
            colorMatrix[i] = new Color[hight];
            for (int j = 0; j < hight; j++)
            {
                colorMatrix[i][j] = b1.GetPixel(i, j);
            }
        }
        return colorMatrix;
    }

    private List<Color> GetColorArray()
    {
        var map = GetColorMap(Pallete);

        List<Color> colors = new List<Color>();

        foreach (var line in map)
        {
            colors.AddRange(line);
        }

        return colors;
    }
}

2
これらはかなり素晴らしいです。焼き付けられたか、腐敗した場所に残された写真のように見えます。

おかげで、Aはいくつかのアルゴリズムを実行しましたが、他のアルゴリズムは他の回答とよく似ていました。だから私はより多くの独特の投稿
RMalke

3

C#

色の距離を比較します。中心から始まります。

編集:更新され、約1.5倍高速になりました。

アメリカンゴシック
ここに画像の説明を入力してください
ザスクリーム
ここに画像の説明を入力してください
スターリーナイト
ここに画像の説明を入力してください
マーブルズ
ここに画像の説明を入力してください
リバー
ここに画像の説明を入力してください
また、ここに黄色のシボレーがあります:
ここに画像の説明を入力してください

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ConsoleApplication1
{
    class Pixel
    {
        public int X = 0;
        public int Y = 0;
        public Color Color = new Color();
        public Pixel(int x, int y, Color clr)
        {
            Color = clr;
            X = x;
            Y = y;
        }
        public Pixel()
        {
        }
    }
    class Vector2
    {
        public int X = 0;
        public int Y = 0;
        public Vector2(int x, int y)
        {
            X = x;
            Y = y;
        }
        public Vector2()
        {
        }
        public double Diagonal()
        {
            return Math.Sqrt((X * X) + (Y * Y));
        }
    }
    class ColorCollection
    {
        Dictionary<Color, int> dict = new Dictionary<Color, int>();
        public ColorCollection()
        {
        }
        public void AddColor(Color color)
        {
            if (dict.ContainsKey(color))
            {
                dict[color]++;
                return;
            }
            dict.Add(color, 1);
        }
        public void UseColor(Color color)
        {
            if (dict.ContainsKey(color))
                dict[color]--;
            if (dict[color] < 1)
                dict.Remove(color);
        }
        public Color FindBestColor(Color color)
        {
            Color ret = dict.First().Key;
            int p = this.CalculateDifference(ret, color);
            foreach (KeyValuePair<Color, int> pair in dict)
            {
                int points = CalculateDifference(pair.Key, color);
                if (points < p)
                {
                    ret = pair.Key;
                    p = points;
                }
            }
            this.UseColor(ret);
            return ret;
        }
        int CalculateDifference(Color c1, Color c2)
        {
            int ret = 0;
            ret = ret + Math.Abs(c1.R - c2.R);
            ret = ret + Math.Abs(c1.G - c2.G);
            ret = ret + Math.Abs(c1.B - c2.B);
            return ret;
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            string img1 = "";
            string img2 = "";
            if (args.Length != 2)
            {
                Console.Write("Where is the first picture located? ");
                img1 = Console.ReadLine();
                Console.Write("Where is the second picture located? ");
                img2 = Console.ReadLine();
            }
            else
            {
                img1 = args[0];
                img2 = args[1];
            }
            Bitmap bmp1 = new Bitmap(img1);
            Bitmap bmp2 = new Bitmap(img2);
            Console.WriteLine("Getting colors....");
            ColorCollection colors = GetColors(bmp1);
            Console.WriteLine("Getting pixels....");
            List<Pixel> pixels = GetPixels(bmp2);
            int centerX = bmp2.Width / 2;
            int centerY = bmp2.Height / 2;
            pixels.Sort((p1, p2) =>
            {
                Vector2 p1_v = new Vector2(Math.Abs(p1.X - centerX), Math.Abs(p1.Y - centerY));
                Vector2 p2_v = new Vector2(Math.Abs(p2.X - centerX), Math.Abs(p2.Y - centerY));
                double d1 = p1_v.Diagonal();
                double d2 = p2_v.Diagonal();
                if (d1 > d2)
                    return 1;
                else if (d1 == d2)
                    return 0;
                return -1;
            });
            Console.WriteLine("Calculating...");
            int k = 0;
            Stopwatch sw = Stopwatch.StartNew();
            for (int i = 0; i < pixels.Count; i++)
            {
                if (i % 100 == 0 && i != 0)
                {
                    float percentage = ((float)i / (float)pixels.Count) * 100;
                    Console.WriteLine(percentage.ToString("0.00") + "% completed(" + i + "/" + pixels.Count + ")");
                    Console.SetCursorPosition(0, Console.CursorTop - 1);
                }
                Color set = colors.FindBestColor(pixels[i].Color);
                pixels[i].Color = set;
                k++;
            }
            sw.Stop();
            Console.WriteLine("Saving...");
            Bitmap result = WritePixelsToBitmap(pixels, bmp2.Width, bmp2.Height);
            result.Save(img1 + ".png");
            Console.WriteLine("Completed in " + sw.Elapsed.TotalSeconds + " seconds. Press a key to exit.");
            Console.ReadKey();
        }
        static Bitmap WritePixelsToBitmap(List<Pixel> pixels, int width, int height)
        {
            Bitmap bmp = new Bitmap(width, height);
            foreach (Pixel pixel in pixels)
            {
                bmp.SetPixel(pixel.X, pixel.Y, pixel.Color);
            }
            return bmp;
        }

        static ColorCollection GetColors(Bitmap bmp)
        {
            ColorCollection ret = new ColorCollection();
            for (int x = 0; x < bmp.Width; x++)
            {
                for (int y = 0; y < bmp.Height; y++)
                {
                    Color clr = bmp.GetPixel(x, y);
                    ret.AddColor(clr);
                }
            }
            return ret;
        }
        static List<Pixel> GetPixels(Bitmap bmp)
        {
            List<Pixel> ret = new List<Pixel>();
            for (int x = 0; x < bmp.Width; x++)
            {
                for (int y = 0; y < bmp.Height; y++)
                {
                    Color clr = bmp.GetPixel(x, y);
                    ret.Add(new Pixel(x, y, clr));
                }
            }
            return ret;
        }
    }
}

3

私は他の答えと非常に似たアルゴリズムを使用することを決めましたが、個々のピクセルの代わりに2x2ピクセルのブロックのみを交換しました。残念ながら、このアルゴリズムは、画像の寸法を2で割り切れるようにするという追加の制約を追加します。これにより、サイズを変更しない限り、レイトレースされた球は使用できなくなります。

私は結果のいくつかが本当に好きです!

川のパレットを持つアメリカンゴシック:

ここに画像の説明を入力してください

アメリカンゴシックパレットのモナリザ:

ここに画像の説明を入力してください

モナリザとリバーパレット:

ここに画像の説明を入力してください

4x4も試しましたが、ここが私のお気に入りです!

スクリームパレットのある星空:

ここに画像の説明を入力してください

アメリカンゴシックパレットのモナリザ:

ここに画像の説明を入力してください

モナリザパレットを使用したスクリーム:

ここに画像の説明を入力してください

モナリザパレットを使用したアメリカンゴシック:

ここに画像の説明を入力してください


1
同じことを行うこと+正方形ブロックに基づいてピクセルの重みを計算することを考えていました。私はモナリザの結果がとても好きです-それらはイメージからイメージの事を思い出させます。万が一4x4ブロックを実行できますか?
14

1
@eithedog 4x4を試してみたところ、かなりよさそうだ。更新された回答をご覧ください!
LVBen 14

3

C#

これは本当に本当に遅いのですが、特にレイトレースされた球体パレットを使用している場合、素晴らしい仕事をします。

ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください

スクリームパレット:

ここに画像の説明を入力してください ここに画像の説明を入力してください

モナリザパレット:

ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください

アメリカンゴシックパレット:

ここに画像の説明を入力してください ここに画像の説明を入力してください

川のパレット:

ここに画像の説明を入力してください ここに画像の説明を入力してください ここに画像の説明を入力してください

Starry Nightパレット:

ここに画像の説明を入力してください ここに画像の説明を入力してください

   class Program
   {
      class Pixel
      {
         public int x;
         public int y;
         public Color color;
         public Pixel(int x, int y, Color color)
         {
            this.x = x;
            this.y = y;
            this.color = color;
         }
      }

      static Pixel BaselineColor = new Pixel(0, 0, Color.FromArgb(0, 0, 0, 0));

      static void Main(string[] args)
      {
         string sourceDirectory = "pic" + args[0] + ".png";
         string paletteDirectory = "pic" + args[1] + ".png";

         using (Bitmap source = Bitmap.FromFile(sourceDirectory) as Bitmap)
         {
            List<Pixel> sourcePixels = GetPixels(source).ToList();
            LinkedList<Pixel> palettePixels;

            using (Bitmap palette = Bitmap.FromFile(paletteDirectory) as Bitmap)
            {
               palettePixels = GetPixels(palette) as LinkedList<Pixel>;
            }

            if (palettePixels.Count != sourcePixels.Count)
            {
               throw new Exception("OH NO!!!!!!!!");
            }

            sourcePixels.Sort((x, y) => GetDiff(y, BaselineColor) - GetDiff(x, BaselineColor));

            LinkedList<Pixel> newPixels = new LinkedList<Pixel>();
            foreach (Pixel p in sourcePixels)
            {
               Pixel newPixel = GetClosestColor(palettePixels, p);
               newPixels.AddLast(newPixel);
            }

            foreach (var p in newPixels)
            {
               source.SetPixel(p.x, p.y, p.color);
            }
            source.Save("Out" + args[0] + "to" + args[1] + ".png");
         }
      }

      private static IEnumerable<Pixel> GetPixels(Bitmap source)
      {
         List<Pixel> newList = new List<Pixel>();
         for (int x = 0; x < source.Width; x++)
         {
            for (int y = 0; y < source.Height; y++)
            {
               newList.Add(new Pixel(x, y, source.GetPixel(x, y)));
            }
         }
         return newList;
      }

      private static Pixel GetClosestColor(LinkedList<Pixel> palettePixels, Pixel p)
      {
         Pixel minPixel = palettePixels.First();
         int diff = GetDiff(minPixel, p);
         foreach (var pix in palettePixels)
         {
            int current = GetDiff(pix, p);
            if (current < diff)
            {
               diff = current;
               minPixel = pix;
               if (diff == 0)
               {
                  return minPixel;
               }
            }
         }
         palettePixels.Remove(minPixel);
         return new Pixel(p.x, p.y, minPixel.color);
      }

      private static int GetDiff(Pixel a, Pixel p)
      {
         return GetProx(a.color, p.color);
      }

      private static int GetProx(Color a, Color p)
      {
         int red = (a.R - p.R) * (a.R - p.R);
         int green = (a.G - p.G) * (a.G - p.G);
         int blue = (a.B - p.B) * (a.B - p.B);
         return red + blue + green;
      }
   }

3

Java-別のマッピングアプローチ

編集1: G +の「数学」環境で共有された後、私たちは皆、複雑さを回避するためにさまざまな方法でマッチングアプローチを使用しているようです。

編集2: Googleドライブの画像を台無しにして再起動したため、古いリンクは機能しなくなりました。申し訳ありませんが、私はまだ、より多くのリンクについてより多くの評判に取り組んでいます。

編集3:他の投稿を読んで、インスピレーションを得ました。ターゲットプログラムの場所に応じていくつかの変更を行うために、プログラムを高速化し、CPU時間を再投資しました。

編集4:新しいプログラムバージョン。もっと早く!鋭い角と非常に滑らかな変化を伴う両方の領域の特別な処理(レイトレーシングでは大いに役立ちますが、モナリザは時々赤目を出します)!アニメーションから中間フレームを生成する機能!

私はこのアイデアをとても気に入っており、Quincunxのソリューションに興味をそそられました。だから、2ユーロセントを追加できると思いました。

アイデアは、2つのカラーパレット間で(ある程度近い)マッピングが必要だということです。

このアイデアで、私は最初の夜を一週間過ごした安定した結婚アルゴリズムをtweekして、高速で実行し、123520の候補者のPCのメモリを使用してみました。メモリーの範囲に入ると、ランタイムの問題は解決できないことがわかりました。

二日目の夜、私はさらに進んで、ハンガリーのアルゴリズムを近似特性、つまりいずれかの画像の色間の最小距離を提供することを約束しました。幸いなことに、この3つのJava実装をプラグインする準備ができていることがわかりました(基本的なアルゴリズムをグーグルで検索するのが非常に困難になっている半完成の学生の割り当てを多くはカウントしていません)。しかし、予想されたかもしれませんが、ハンガリーのアルゴリズムは実行時間とメモリ使用量の点でさらに悪いです。さらに悪いことに、私がテストした3つの実装すべてが、時々間違った結果を返しました。これらに基づいているかもしれない他のプログラムについて考えるとき、私は震えます。

3番目のアプローチ(2番目の夜の終わり)は、簡単、迅速、迅速であり、結局それほど悪くはありませんでした:明るさおよび単純なマップの両方の色を、ランクで並べ替えます。これにより、すぐにランダムな色が散らばったシャープな白黒の再構成が作成されます。

*これまでのアプローチ4と最終段階(2日目の朝)は、上記の明度マッピングから始まり、ハンガリーのアルゴリズムをさまざまな重なり合うピクセルシーケンスに適用することで、ローカル補正を追加します。これにより、マッピングが改善され、問題の複雑さと実装のバグの両方に対処できました。

したがって、ここにいくつかのJavaコードがあります。一部のパーツは、ここに投稿された他のJavaコードに似ているかもしれません。使用されるハンガリー語は、ontologySimilariyプロジェクトで元々使用されていたJohn Millersのパッチバージョンです。これは私が発見した最速の方法であり、最も少ないバグを示しました。

import java.awt.image.BufferedImage;
import java.io.File;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Set;
import java.util.HashSet;
import java.util.Map;
import java.util.HashMap;
import java.util.List;
import javax.imageio.ImageIO;

/**
 *
 */
public class PixelRearranger {

    private final String mode;

    public PixelRearranger(String mode)
    {
        this.mode = mode;
    }

    public final static class Pixel {
        final BufferedImage img;
        final int val;
        final int r, g, b;
        final int x, y;

        public Pixel(BufferedImage img, int x, int y) {
            this.x = x;
            this.y = y;
            this.img = img;
            if ( img != null ) {
                val = img.getRGB(x,y);
                r = ((val & 0xFF0000) >> 16);
                g = ((val & 0x00FF00) >> 8);
                b = ((val & 0x0000FF));
            } else {
                val = r = g = b = 0;
            }
        }

        @Override
        public int hashCode() {
            return x + img.getWidth() * y + img.hashCode();
        }

        @Override
        public boolean equals(Object o) {
            if ( !(o instanceof Pixel) ) return false;
            Pixel p2 = (Pixel) o;
            return p2.x == x && p2.y == y && p2.img == img;
        }

        public double cd() {
            double x0 = 0.5 * (img.getWidth()-1);
            double y0 = 0.5 * (img.getHeight()-1);
            return Math.sqrt(Math.sqrt((x-x0)*(x-x0)/x0 + (y-y0)*(y-y0)/y0));
        }

        @Override
        public String toString() { return "P["+r+","+g+","+b+";"+x+":"+y+";"+img.getWidth()+":"+img.getHeight()+"]"; }
    }

    public final static class Pair
        implements Comparable<Pair>
    {   
        public Pixel palette, from;
        public double d;

        public Pair(Pixel palette, Pixel from)
        {
            this.palette = palette;
            this.from = from;
            this.d = distance(palette, from);
        }

        @Override
        public int compareTo(Pair e2)
        {
            return sgn(e2.d - d);
        }

        @Override
        public String toString() { return "E["+palette+from+";"+d+"]"; }
    }

    public static int sgn(double d) { return d > 0.0 ? +1 : d < 0.0 ? -1 : 0; }

    public final static int distance(Pixel p, Pixel q)
    {
        return 3*(p.r-q.r)*(p.r-q.r) + 6*(p.g-q.g)*(p.g-q.g) + (p.b-q.b)*(p.b-q.b);
    }

    public final static Comparator<Pixel> LUMOSITY_COMP = (p1,p2) -> 3*(p1.r-p2.r)+6*(p1.g-p2.g)+(p1.b-p2.b);


    public final static class ArrangementResult
    {
        private List<Pair> pairs;

        public ArrangementResult(List<Pair> pairs)
        {
            this.pairs = pairs;
        }

        /** Provide the output image */
        public BufferedImage finalImage()
        {
            BufferedImage target = pairs.get(0).from.img;
            BufferedImage res = new BufferedImage(target.getWidth(),
                target.getHeight(), BufferedImage.TYPE_INT_RGB);
            for(Pair p : pairs) {
                Pixel left = p.from;
                Pixel right = p.palette;
                res.setRGB(left.x, left.y, right.val);
            }
            return res;
        }

        /** Provide an interpolated image. 0 le;= alpha le;= 1 */
        public BufferedImage interpolateImage(double alpha)
        {
            BufferedImage target = pairs.get(0).from.img;
            int wt = target.getWidth(), ht = target.getHeight();
            BufferedImage palette = pairs.get(0).palette.img;
            int wp = palette.getWidth(), hp = palette.getHeight();
            int w = Math.max(wt, wp), h = Math.max(ht, hp);
            BufferedImage res = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
            int x0t = (w-wt)/2, y0t = (h-ht)/2;
            int x0p = (w-wp)/2, y0p = (h-hp)/2;
            double a0 = (3.0 - 2.0*alpha)*alpha*alpha;
            double a1 = 1.0 - a0;
            for(Pair p : pairs) {
                Pixel left = p.from;
                Pixel right = p.palette;
                int x = (int) (a1 * (right.x + x0p) + a0 * (left.x + x0t));
                int y = (int) (a1 * (right.y + y0p) + a0 * (left.y + y0t));
                if ( x < 0 || x >= w ) System.out.println("x="+x+", w="+w+", alpha="+alpha);
                if ( y < 0 || y >= h ) System.out.println("y="+y+", h="+h+", alpha="+alpha);
                res.setRGB(x, y, right.val);
            }
            return res;
        }
    }

    public ArrangementResult rearrange(BufferedImage target, BufferedImage palette)
    {
        List<Pixel> targetPixels = getColors(target);
        int n = targetPixels.size();
        System.out.println("total Pixels "+n);
        Collections.sort(targetPixels, LUMOSITY_COMP);

        final double[][] energy = energy(target);

        List<Pixel> palettePixels = getColors(palette);
        Collections.sort(palettePixels, LUMOSITY_COMP);

        ArrayList<Pair> pairs = new ArrayList<>(n);
        for(int i = 0; i < n; i++) {
            Pixel pal = palettePixels.get(i);
            Pixel to = targetPixels.get(i);
            pairs.add(new Pair(pal, to));
        }
        correct(pairs, (p1,p2) -> sgn(p2.d*p2.from.b - p1.d*p1.from.b));
        correct(pairs, (p1,p2) -> sgn(p2.d*p2.from.r - p1.d*p1.from.r));
        // generates visible circular artifacts: correct(pairs, (p1,p2) -> sgn(p2.d*p2.from.cd() - p1.d*p1.from.cd()));
        correct(pairs, (p1,p2) -> sgn(energy[p2.from.x][p2.from.y]*p2.d - energy[p1.from.x][p1.from.y]*p1.d));
        correct(pairs, (p1,p2) -> sgn(p2.d/(1+energy[p2.from.x][p2.from.y]) - p1.d/(1+energy[p1.from.x][p1.from.y])));
        // correct(pairs, null);
        return new ArrangementResult(pairs);

    }

    /**
     * derive an energy map, to detect areas of lots of change.
     */
    public double[][] energy(BufferedImage img)
    {
        int n = img.getWidth();
        int m = img.getHeight();
        double[][] res = new double[n][m];
        for(int x = 0; x < n; x++) {
            for(int y = 0; y < m; y++) {
                int rgb0 = img.getRGB(x,y);
                int count = 0, sum = 0;
                if ( x > 0 ) {
                    count++; sum += dist(rgb0, img.getRGB(x-1,y));
                    if ( y > 0 ) { count++; sum += dist(rgb0, img.getRGB(x-1,y-1)); }
                    if ( y < m-1 ) { count++; sum += dist(rgb0, img.getRGB(x-1,y+1)); }
                }
                if ( x < n-1 ) {
                    count++; sum += dist(rgb0, img.getRGB(x+1,y));
                    if ( y > 0 ) { count++; sum += dist(rgb0, img.getRGB(x+1,y-1)); }
                    if ( y < m-1 ) { count++; sum += dist(rgb0, img.getRGB(x+1,y+1)); }
                }
                if ( y > 0 ) { count++; sum += dist(rgb0, img.getRGB(x,y-1)); }
                if ( y < m-1 ) { count++; sum += dist(rgb0, img.getRGB(x,y+1)); }
                res[x][y] = Math.sqrt((double)sum/count);
            }
        }
        return res;
    }

    public int dist(int rgb0, int rgb1) {
        int r0 = ((rgb0 & 0xFF0000) >> 16);
        int g0 = ((rgb0 & 0x00FF00) >> 8);
        int b0 = ((rgb0 & 0x0000FF));
        int r1 = ((rgb1 & 0xFF0000) >> 16);
        int g1 = ((rgb1 & 0x00FF00) >> 8);
        int b1 = ((rgb1 & 0x0000FF));
        return 3*(r0-r1)*(r0-r1) + 6*(g0-g1)*(g0-g1) + (b0-b1)*(b0-b1);
    }

    private void correct(ArrayList<Pair> pairs, Comparator<Pair> comp)
    {
        Collections.sort(pairs, comp);
        int n = pairs.size();
        int limit = Math.min(n, 133); // n / 1000;
        int limit2 = Math.max(1, n / 3 - limit);
        int step = (2*limit + 2)/3;
        for(int base = 0; base < limit2; base += step ) {
            List<Pixel> list1 = new ArrayList<>();
            List<Pixel> list2 = new ArrayList<>();
            for(int i = base; i < base+limit; i++) {
                list1.add(pairs.get(i).from);
                list2.add(pairs.get(i).palette);
            }
            Map<Pixel, Pixel> connection = rematch(list1, list2);
            int i = base;
            for(Pixel p : connection.keySet()) {
                pairs.set(i++, new Pair(p, connection.get(p)));
            }
        }
    }

    /**
     * Glue code to do an hungarian algorithm distance optimization.
     */
    public Map<Pixel,Pixel> rematch(List<Pixel> liste1, List<Pixel> liste2)
    {
        int n = liste1.size();
        double[][] cost = new double[n][n];
        Set<Pixel> s1 = new HashSet<>(n);
        Set<Pixel> s2 = new HashSet<>(n);
        for(int i = 0; i < n; i++) {
            Pixel ii = liste1.get(i);
            for(int j = 0; j < n; j++) {
                Pixel ij = liste2.get(j);
                cost[i][j] = -distance(ii,ij);
            }
        }
        Map<Pixel,Pixel> res = new HashMap<>();
        int[] resArray = Hungarian.hungarian(cost);
        for(int i = 0; i < resArray.length; i++) {
            Pixel ii = liste1.get(i);
            Pixel ij = liste2.get(resArray[i]);
            res.put(ij, ii);
        }
        return res;
    }

    public static List<Pixel> getColors(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Pixel> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(new Pixel(img, x, y));
            }
        }
        return colors;
    }

    public static List<Integer> getSortedTrueColors(BufferedImage img) {
        int width = img.getWidth();
        int height = img.getHeight();
        List<Integer> colors = new ArrayList<>(width * height);
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {
                colors.add(img.getRGB(x, y));
            }
        }
        Collections.sort(colors);
        return colors;
    }

    public static void main(String[] args) throws Exception {
        int i = 0;
        String mode = args[i++];
        PixelRearranger pr = new PixelRearranger(mode);
        String a1 = args[i++];
        File in1 = new File(a1);
        String a2 = args[i++];
        File in2 = new File(a2);
        File out = new File(args[i++]);
        //
        BufferedImage target = ImageIO.read(in1);
        BufferedImage palette = ImageIO.read(in2);
        long t0 = System.currentTimeMillis();
        ArrangementResult result = pr.rearrange(target, palette);
        BufferedImage resultImg = result.finalImage();
        long t1 = System.currentTimeMillis();
        System.out.println("took "+0.001*(t1-t0)+" s");
        ImageIO.write(resultImg, "png", out);
        // Check validity
        List<Integer> paletteColors = getSortedTrueColors(palette);
        List<Integer> resultColors = getSortedTrueColors(resultImg);
        System.out.println("validate="+paletteColors.equals(resultColors));
        // In Mode A we do some animation!
        if ( "A".equals(mode) ) {
            for(int j = 0; j <= 50; j++) {
                BufferedImage stepImg = result.interpolateImage(0.02 * j);
                File oa = new File(String.format("anim/%s-%s-%02d.png", a1, a2, j));
                ImageIO.write(stepImg, "png", oa);
            }
        }
    }
}

現在の実行時間は上記のイメージペアごとに20〜30秒ですが、高速化するか、品質を向上させるための調整がたくさんあります。

私の初心者の評判はそのような多くのリンク/画像には十分ではないようですので、ここに画像サンプル用のGoogleドライブフォルダへのテキストショートカットがあります:http : //goo.gl/qZHTao

最初に見せたいサンプル:

人々->モナリザhttp://goo.gl/mGvq9h

プログラムはすべてのポイント座標を追跡しますが、私は今疲れを感じており、今のところアニメーションを行う予定はありません。もっと時間を費やすなら、自分でハンガリー語のアルゴリズムを実行するか、プログラムのローカル最適化スケジュールを週に1回実行します。

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.