Fortran 90
60個のarctan値の事前に配列された配列でCORDICメソッドを採用しています(それが必要な理由の詳細については、Wikiの記事を参照してください)。
このコードには、trig.in
改行のすべての値がFortran実行可能ファイルと同じフォルダーに格納されているファイルが必要です。これをコンパイルすると、
gfortran -O3 -o file file.f90
どこにfile
ファイル名を指定しても(おそらくSinCosTan.f90
最も簡単ですが、プログラム名とファイル名を一致させる必要はありません)。Intelコンパイラを使用している場合は、使用することをお勧めします
ifort -O3 -xHost -o file file.f90
-xHost
(のgfortranのために存在しない)あなたのプロセッサが利用可能な高いレベルの最適化を提供します。
私のテスト実行では、gfortran 4.4を使用して1000のランダムアングルをテストするときに計算ごとに約10マイクロ秒(Ubuntuリポジトリで4.7または4.8が利用可能)、ifort 12.1を使用して約9.5マイクロ秒でした。10のランダムな角度のみをテストすると、Fortranルーチンを使用すると時間が不確定になります。タイミングルーチンはミリ秒単位で正確であり、簡単な計算では10の数値すべてを実行するには0.100ミリ秒かかるはずです。
編集私はどうやらIOのタイミングを調整していたようです。これを反映するようにコードを更新しました。またkind=8
、組み込みサブルーチンで整数を使用すると、system_clock
マイクロ秒の精度が得られることも発見しました。
この更新されたコードを使用して、約0.3マイクロ秒で三角関数の値の各セットを計算しています(最後の有効数字は実行ごとに異なりますが、常に0.31 us近くでホバリングしています)。 IOのタイミングを調整した反復。
program SinCosTan
implicit none
integer, parameter :: real64 = selected_real_kind(15,307)
real(real64), parameter :: PI = 3.1415926535897932384626433832795028842
real(real64), parameter :: TAU = 6.2831853071795864769252867665590057684
real(real64), parameter :: half = 0.500000000000000000000_real64
real(real64), allocatable :: trigs(:,:), angles(:)
real(real64) :: time(2), times, b
character(len=12) :: tout
integer :: i,j,ierr,amax
integer(kind=8) :: cnt(2)
open(unit=10,file='trig.out',status='replace')
open(unit=12,file='CodeGolf/trig.in',status='old')
! check to see how many angles there are
i=0
do
read(12,*,iostat=ierr) b
if(ierr/=0) exit
i=i+1
enddo !-
print '(a,i0,a)',"There are ",i," angles"
amax = i
! allocate array
allocate(trigs(3,amax),angles(amax))
! rewind the file then read the angles into the array
rewind(12)
do i=1,amax
read(12,*) angles(i)
enddo !- i
! compute trig functions & time it
times = 0.0_real64
call system_clock(cnt(1)) ! <-- system_clock with an 8-bit INT can time to us
do i=1,amax
call CORDIC(angles(i), trigs(:,i), 40)
enddo !- i
call system_clock(cnt(2))
times = times + (cnt(2) - cnt(1))
! write the angles to the file
do i=1,amax
do j=1,3
if(trigs(j,i) > 1d100) then
write(tout,'(a1)') 'n'
elseif(abs(trigs(j,i)) > 1.0) then
write(tout,'(f10.6)') trigs(j,i)
elseif(abs(trigs(j,i)) < 0.1) then
write(tout,'(f10.8)') trigs(j,i)
else
write(tout,'(f9.7)') trigs(j,i)
endif
write(10,'(a)',advance='no') tout
enddo !- j
write(10,*)" "
enddo !- i
print *,"computation took",times/real(i,real64),"us per angle"
close(10); close(12)
contains
!> @brief compute sine/cosine/tangent
subroutine CORDIC(a,t,n)
real(real64), intent(in) :: a
real(real64), intent(inout) :: t(3)
integer, intent(in) :: n
! local variables
real(real64), parameter :: deg2rad = 1.745329252e-2
real(real64), parameter :: angles(60) = &
[ 7.8539816339744830962e-01_real64, 4.6364760900080611621e-01_real64, &
2.4497866312686415417e-01_real64, 1.2435499454676143503e-01_real64, &
6.2418809995957348474e-02_real64, 3.1239833430268276254e-02_real64, &
1.5623728620476830803e-02_real64, 7.8123410601011112965e-03_real64, &
3.9062301319669718276e-03_real64, 1.9531225164788186851e-03_real64, &
9.7656218955931943040e-04_real64, 4.8828121119489827547e-04_real64, &
2.4414062014936176402e-04_real64, 1.2207031189367020424e-04_real64, &
6.1035156174208775022e-05_real64, 3.0517578115526096862e-05_real64, &
1.5258789061315762107e-05_real64, 7.6293945311019702634e-06_real64, &
3.8146972656064962829e-06_real64, 1.9073486328101870354e-06_real64, &
9.5367431640596087942e-07_real64, 4.7683715820308885993e-07_real64, &
2.3841857910155798249e-07_real64, 1.1920928955078068531e-07_real64, &
5.9604644775390554414e-08_real64, 2.9802322387695303677e-08_real64, &
1.4901161193847655147e-08_real64, 7.4505805969238279871e-09_real64, &
3.7252902984619140453e-09_real64, 1.8626451492309570291e-09_real64, &
9.3132257461547851536e-10_real64, 4.6566128730773925778e-10_real64, &
2.3283064365386962890e-10_real64, 1.1641532182693481445e-10_real64, &
5.8207660913467407226e-11_real64, 2.9103830456733703613e-11_real64, &
1.4551915228366851807e-11_real64, 7.2759576141834259033e-12_real64, &
3.6379788070917129517e-12_real64, 1.8189894035458564758e-12_real64, &
9.0949470177292823792e-13_real64, 4.5474735088646411896e-13_real64, &
2.2737367544323205948e-13_real64, 1.1368683772161602974e-13_real64, &
5.6843418860808014870e-14_real64, 2.8421709430404007435e-14_real64, &
1.4210854715202003717e-14_real64, 7.1054273576010018587e-15_real64, &
3.5527136788005009294e-15_real64, 1.7763568394002504647e-15_real64, &
8.8817841970012523234e-16_real64, 4.4408920985006261617e-16_real64, &
2.2204460492503130808e-16_real64, 1.1102230246251565404e-16_real64, &
5.5511151231257827021e-17_real64, 2.7755575615628913511e-17_real64, &
1.3877787807814456755e-17_real64, 6.9388939039072283776e-18_real64, &
3.4694469519536141888e-18_real64, 1.7347234759768070944e-18_real64]
real(real64), parameter :: kvalues(33) = &
[ 0.70710678118654752440e+00_real64, 0.63245553203367586640e+00_real64, &
0.61357199107789634961e+00_real64, 0.60883391251775242102e+00_real64, &
0.60764825625616820093e+00_real64, 0.60735177014129595905e+00_real64, &
0.60727764409352599905e+00_real64, 0.60725911229889273006e+00_real64, &
0.60725447933256232972e+00_real64, 0.60725332108987516334e+00_real64, &
0.60725303152913433540e+00_real64, 0.60725295913894481363e+00_real64, &
0.60725294104139716351e+00_real64, 0.60725293651701023413e+00_real64, &
0.60725293538591350073e+00_real64, 0.60725293510313931731e+00_real64, &
0.60725293503244577146e+00_real64, 0.60725293501477238499e+00_real64, &
0.60725293501035403837e+00_real64, 0.60725293500924945172e+00_real64, &
0.60725293500897330506e+00_real64, 0.60725293500890426839e+00_real64, &
0.60725293500888700922e+00_real64, 0.60725293500888269443e+00_real64, &
0.60725293500888161574e+00_real64, 0.60725293500888134606e+00_real64, &
0.60725293500888127864e+00_real64, 0.60725293500888126179e+00_real64, &
0.60725293500888125757e+00_real64, 0.60725293500888125652e+00_real64, &
0.60725293500888125626e+00_real64, 0.60725293500888125619e+00_real64, &
0.60725293500888125617e+00_real64 ]
real(real64) :: beta, c, c2, factor, poweroftwo, s
real(real64) :: s2, sigma, sign_factor, theta, angle
integer :: j
! scale to radians
beta = a*deg2rad
! ensure angle is shifted to appropriate range
call angleShift(beta, -PI, theta)
! check for signs
if( theta < -half*PI) then
theta = theta + PI
sign_factor = -1.0_real64
else if( half*PI < theta) then
theta = theta - PI
sign_factor = -1.0_real64
else
sign_factor = +1.0_real64
endif
! set up some initializations...
c = 1.0_real64
s = 0.0_real64
poweroftwo = 1.0_real64
angle = angles(1)
! run for 30 iterations (should be good enough, need testing)
do j=1,n
sigma = merge(-1.0_real64, +1.0_real64, theta < 0.0_real64)
factor = sigma*poweroftwo
c2 = c - factor*s
s2 = factor*c + s
c = c2
s = s2
! update remaining angle
theta = theta - sigma*angle
poweroftwo = poweroftwo*0.5_real64
if(j+1 > 60) then
angle = angle * 0.5_real64
else
angle = angles(j+1)
endif
enddo !- j
if(n > 0) then
c = c*Kvalues(min(n,33))
s = s*Kvalues(min(n,33))
endif
c = c*sign_factor
s = s*sign_factor
t = [s, c, s/c]
end subroutine CORDIC
subroutine angleShift(alpha, beta, gamma)
real(real64), intent(in) :: alpha, beta
real(real64), intent(out) :: gamma
if(alpha < beta) then
gamma = beta - mod(beta - alpha, TAU) + TAU
else
gamma = beta + mod(alpha - beta, TAU)
endif
end subroutine angleShift
end program SinCosTan