ネパールの国旗を描きましょう


28

ネパールの旗(WikipediaNumberphile)は、他のものとは非常に異なって見えます。また、特定の描画命令もあります(Wikipediaの記事に含まれています)。ネパールの国旗を描くプログラムを作ってほしい。

ユーザーは、要求されたフラグの高さ(100〜10000ピクセル)を入力し、プログラムはネパールのフラグを出力します。フラグを描画する方法は、ASCIIアートからOpenGLまですべて選択できます。

これは人気のコンテストなので、勝者は2月1日に最も多く投票される回答になるため、コードの長さについては気にしないでください。

要件は1つだけです。Webリソースの使用は許可されていません。

楽しむ :)

ウィキメディアコモンズのネパールの国旗の画像


1
既視感!また、100pxにはASCIIテキストの行がいくつありますか?
ケンドールフレイ14年

@KendallFreyまあ、ASCIIアートはこれを解決する方法の1つですが、あなたの質問には答えがありません。フォントサイズと行間隔に依存するため、回答プロバイダーは自分でカウントする必要があります。
ST3 14年

1
その場合、確かにprint("|\\\n|\\")有効なソリューションです。ビットマップ以外のエントリのルールについて、より具体的にする必要があると思います。
ケンドールフレイ14年

5
質問を削除して再投稿しないでください。編集には理由があります...また、新しい質問にはリンクがありません。
ドアノブ

1
また、インターネットリソースを許可するのではなく、フラグを実際に描画する(つまり、コードで作成する)必要はありません。
ジャスティン14年

回答:


18

SVG、 137512621036999943、939

<svg>
<defs>
<style>.w{fill:white}</style>
<g id="f"><path d="M1,1L1,20L18,20L6,10L17,10z" style="stroke:#003893;fill:#dc143c"/></g>
<g id="m"><polygon points="1,0 -.5,.86 -.5,-.86"/></g>
<g id="b"><polygon points="1,0 -.5,.86 -.5,-.86"/><polygon points="1,0 -.5,.86 -.5,-.86"transform="rotate(32)"/></g>
<g id="t"><use xlink:href="#b"/><use xlink:href="#b"transform="rotate(60)"/></g>
<g id="s">
<use xlink:href="#m"/>
<use xlink:href="#m"transform="rotate(20)"/>
<use xlink:href="#m"transform="rotate(45)"/>
<use xlink:href="#m"transform="rotate(70)"/>
<use xlink:href="#m"transform="rotate(90)"/>
</g>
</defs>
<g transform="scale(.7)">
<use xlink:href="#f" x="5" y="6"transform="scale(19,23)"/>
<use xlink:href="#t" x="2.8" y="7"class="w"transform="scale(70)"/>
<path d="M157,292 A 40,35 0 1 0 237,292 43,45 0 1 1 157,292z"class="w"/>
<use xlink:href="#s" x="5.6" y="8.9"class="w"transform="scale(35)"/>
</g>
</svg>

Chromeレンダリング

SVGには実際にはユーザー入力(FAIK)がないため、この行を変更してスケールを変更できます。

<g transform="scale(.7)">


月には正確に8個、太陽には12個の三角形が必要です。しかし、あなたは11と15だ
ビクターStafusaを

修正する必要があります。
ガブリエーレダントーナ

2
ユーザー入力があります。CTRL + +またはCTRL +-を押すと、ユーザーは多くのWebブラウザーでスケールを変更できます。
コンラッドボロスキー14年

これは918バイトの長さです(Windowsの代わりにUnixの行末を使用して、改行ごとのバイトを節約できます)。私たちは、そのトピックにいる間、そして、あなただけの897にそれを持って来るために完全に改行をドロップすることができますしかし、、これは私のためにIE、クロム、FirefoxやInkscapeのいずれかですべてでレンダリングされません。少なくともスタンドアロンSVGとしてではありません。HTMLに埋め込まれている場合のみ(ただし、960バイトになります)。XMLエラーを修正すると、ファイルは1008バイトになります。少しゴルフをします。
ジョーイ14年

hypftier.de/temp/svg.7zは、私が行った変更を含むMercurialリポジトリです。メッセージを最も簡単に検査できますhg log --style=changelog -r 0..tip。そこで使用した手法について、より詳細に説明することができます。
ジョーイ14年

27

JavaScript、569 537 495 442文字(ASCII)

h="";M=Math;Z=M.max;Y=M.min;function d(a,b,r,s,t){n=M.sqrt(a*a+e*e);return n-(r+M.abs((M.atan2(a,e
)/M.PI*b+t)%1-0.5)*s*n)}f=parseInt(prompt(),10);for(g=0;g<f;g++){for(k=0;k<2*f;k++)e=k/(0.5*f)-0.8
,q=g/(0.25*f),u=q-1.08,v=q-1.29,z=e*e+u*u-0.3364,E=Z(-e-0.8,Y(Z(0.62*e+0.8-q,-2.06+q),Z(1*e+0.8+
0.85-q,-3.87+q))),p=0>Y(d(q-2.91,6,0.38,0.7,10),Y(Z(e*e+v*v-0.3025,-z),Z(d(q-1.54,8,0.25,0.6,10.5)
,q-1.7)))?" ":-0.13>E?";":0>=E?"8":"",h+=p;h+="\n"}h 

実行するには:ブラウザコンソールにコピーして貼り付けます(例:Chrome開発者ツールまたはFirebug)

結果:

8 
8888 
8888888 
8888;88888 
8888;;;;88888 
8888;;;;;;;888888 
8888;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;; ;  ;  ; ;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;; ;;;;;               ;;;;; ;;;;;;;;;;;;;;;;88888 
8888;;;  ;;;;;;           ;;;;;;  ;;;;;;;;;;;;;;;;;;;888888 
8888;;;;   ;;;             ;;;   ;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;               ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;88888 
8888;;;;;;;;;;;;;;;;;;;;;;8888888888888888888888888888888888888888888888888888888 
8888;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;888 
8888;;;;;;;;;   ;;;   ;;;   ;;;;;;;;;;888 
8888;;;;;;;;;;             ;;;;;;;;;;;;;888 
8888;;;;                         ;;;;;;;;;888 
8888;;;;;;                     ;;;;;;;;;;;;;888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;888 
8888;;;                           ;;;;;;;;;;;;;;888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;                   ;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;                       ;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;; ;;;;;             ;;;;; ;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;               ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;  ;;;;   ;;;;  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;888 
8888888888888888888888888888888888888888888888888888888888888888888888888 
888888888888888888888888888888888888888888888888888888888888888888888888888 

編集:ST3が示唆するように、ユーザー入力として高さを追加しました。大きな値(例:120)で最適に動作します


さて、よさそうですが、ユーザー入力はどこにありますか?これは要件の1つです。
ST3 14年

私はそれを知りませんでした(または少なくともそれを読みませんでした:))。回答を更新しました。
tigrou 14年

あなたの月には6つの三角形があります。さらに、値が大きいとブラウザーがクラッシュしました。
ビクターStafusa 14年

コード全体を再確認しました。レンダリングは元のフラグに近くなり、特に高さの低い値(例:20ピクセル)で見た目が良くなりました。月は修正され、適切な数の三角形があります(星は低すぎてすべてを表示できません)。推奨される高さの値は「100」です。
tigrou 14年

クレイジー優れた提出。
デボンパーソンズ14

23

Mathematica

ネパールの暫定憲法-スケジュール1(第6条に関連)、pp。260および262には、フラグの作成方法に関する25の詳細な手順が記載されています。(http://www.ccd.org.np/resources/interim.pdfを参照)。コメント内の数字は、憲法の対応する指示を参照しています。

正三角形を描き、点から線までの距離を決定する関数が必要です。

ClearAll[triangle]
triangle[a_?NumericQ,b_?NumericQ,c_?NumericQ,labeled_:True]:=
Block[{x,y,pt,sqr},sqr=#.#&;
pt[a1_,b1_,c1_]:=Reduce[sqr[{x,y}]==b1^2&&sqr[{x,y}-{a1,0}]==c1^2&&y>0,{x,y}];
{(
(*Polygon[{{0,0},{a,0},{x,y}}]*)
Polygon[{{-a/2(*0*),0},{a/2,0},{x-a/2,y}}]),
If[labeled,
{Text[Style[Framed[a,Background->LightYellow],11],{a/2,0}],
Text[Style[Framed[b,Background->LightYellow],11],{x/2,y/2}],
Text[Style[Framed[c,Background->LightYellow],11],{(a+x)/2,y/2}]},{}]}/.ToRules[pt[a,b,c]]]

(*distance from point to a line *)
dist[line_,{x0_,y0_}]:=(Abs[a x0+b y0+c]/.{x0-> m[[1]],y0-> m[[2]]})/Sqrt[a^2+b^2]; (* used below *)

残りのコード。指示を参照する番号付き。断然、最も挑戦的な部分は月と太陽の光線を作ることです。 GeometricalTransformation変換と回転を行うのに便利です。

    (*shape inside flag*)
(*1*)
w=100;a={0,0};b={w,0};
lAB=Line[{a,b}];
tA=Text["A",Offset[{-10,-20},a]];
tB=Text["B",Offset[{20,-20},b]];

(*2*)
c={0,w 4/3};d={0,w};
lAC=Line[{a,c}];
tC=Text["C",Offset[{-10,20},c]];
lAD=Line[{a,d}];
tD=Text["D",Offset[{-10,0},d]];
lBD=Line[{b,d}];

(*3*)
e=Solve[(x-w)^2+y^2==(w)^2&&y==w-x,{x,y}][[1,All,2]];
tE=Text["E",Offset[{15,0},e]];

(*4*)
f={0,e[[2]]};tF=Text["F",Offset[{-10,0},f]];
g={w,e[[2]]};tG=Text["G",Offset[{15,0},g]];
lFG=Line[{f,g}];
poly={a,b,e,g,c};

(*5*)lCG= Line[{c,g}];

(*moon*)
(*6*)
lineCG=N[((f[[2]]-c[[2]])/w)x+c[[2]](*100*)];
h={w/4,0};tH=Text["H",Offset[{0,-20},h]];
i={h[[1]],lineCG/.x->h[[1]]};tI=Text["I",Offset[{10,0},i]];
lHI={Dashed, LightGray,Line[{h,i}]};

(*7*)
j={0,f[[2]]+(c[[2]]-f[[2]])/2};tJ=Text["J",Offset[{-10,10},j]];
lineJG=N[((f[[2]]-j[[2]])/g[[1]])x+j[[2]]];
k={Solve[lineCG==j[[2]],x][[1,1,2]],j[[2]]};tK=Text["K",Offset[{10,10},k]];
(*k={Solve[lineCG\[Equal]c[[2]],x][[1,1,2]],j[[2]]};tK=Text["K",Offset[{10,10},k]];*)
lJK={Dashed, LightGray,Line[{j,k}]};

(*8*)l={i[[1]],j[[2]]};tL=Text["L",Offset[{0,10},l]];
(*9*)lJG={LightGray,Dashed,Line[{j,g}]};
(*10*)m={h[[1]],(lineJG/.x-> h[[1]])};tM=Text["M",Offset[{0,10},m]];
(*11*)distMfromBD=dist[{1,1,-w(*100*)},m];
 n={i[[1]],m[[2]]-distMfromBD};tN=Text["N",Offset[{0,0},n]];
(*ln=Abs[l[[2]]-n[[2]]];*)
(*12*)o={0,m[[2]]};tO=Text["O",Offset[{-10,0},o]];
lM={Dashed,LightGray,Line[{o,{g[[1]],o[[2]]}}]};

(*13*)
radiusLN=l[[2]]-n[[2]];
p={m[[1]]-radiusLN,m[[2]]};tP=Text["P",Offset[{0,10},p]];
q={m[[1]]+radiusLN,m[[2]]};tQ=Text["Q",Offset[{0,10},q]];
moonUpperEdge={White,Circle[l,radiusLN,{Pi,2 Pi}]};
moonLowerEdge={White,Circle[m,radiusMQ,{Pi,2 Pi}]};


(*14*)radiusMQ=q[[1]]-m[[1]];


(*15*)radiusNM=m[[2]]-n[[2]];
arc={Yellow,Circle[n,radiusNM,{Pi/7,6 Pi/7}]};
{r,s}=Solve[(x-l[[1]])^2+(y-l[[2]])^2==(radiusLN)^2 &&(x-n[[1]])^2+(y-n[[2]])^2==(radiusNM)^2,{x,y}][[All,All,2]];
tR=Text["R",Offset[{0,0},r]];
tS=Text["S",Offset[{0,0},s]];
t={h[[1]],r[[2]]};
tT={Black,Text["T",Offset[{0,0},t]]};


(*16*)radiusTS=Abs[t[[1]]-s[[1]]];
(*17*)radiusTM=Abs[t[[2]]-m[[2]]];

(*18 triangles*)
t2=Table[GeometricTransformation[GeometricTransformation[triangle[4,4,4,False][[1]],RotationTransform[k Pi/8]],{TranslationTransform[t]}],{k,-4,3}];
midRadius=(Abs[radiusTM+radiusTS]/2-2);
pos=1;table2=GeometricTransformation[t2[[pos++]],{TranslationTransform[#]}]&/@Table[midRadius {Cos@t,Sin[t]},{t,Pi/16,15 Pi/16,\[Pi]/8}];

(*19 sun*)u={0,f[[2]]/2};tU=Text["U",Offset[{-10,0},u]];
lineBD=N[(d[[2]]/w)x+d[[2]]];
v={-Solve[lineBD==u[[2]],x][[1,1,2]],u[[2]]};tV=Text["V",Offset[{10,0},v]];
lUV={LightGray,Dashed,Line[{u,v}]};

(*20*)w={h[[1]],u[[2]]};tW={Black,Text["W",Offset[{0,0},w]]};
(*21*)
(*22*)

t3=Table[GeometricTransformation[GeometricTransformation[triangle[9,9,9,False][[1]],RotationTransform[k Pi/6]],{TranslationTransform[w]}],{k,-3,9}];
midRadius3=(Abs[radiusTM+radiusTS]/2+2.5);
pos=1;
table3=GeometricTransformation[t3[[pos++]],{TranslationTransform[#]}]&/@Table[midRadius3 {Cos@t,Sin[t]},{t,0,2 Pi,2\[Pi]/12}];



Show[
Graphics[{Gray,
(*1*)lAB,tA,tB,
(*2*)lAC,tC,lAD,tD,lBD,
(*3*)tE,
(*4*)tF,lFG,tG,{Red,Opacity[.4],Polygon[poly]},
(*5*)lCG,
(*6*)tH,lCG,tI,lHI,
(*7*)tJ,lJK,tK,
(*8*)tL,
(*9*)lJG,
(*10*)tM,
(*11*)tN,
(*12*)lM,tO,
(*13*)moonUpperEdge,tP,tQ,
(*14*)moonLowerEdge,
(*15*)arc,tR,tS,tT,
(*16*){White,Dashed,Circle[t,radiusTS(*,{0, Pi}*)]},

(*17*){White,Opacity[.5],Disk[t,radiusTM,{0, 2 Pi}]},
(*18 triangles*){White,(*EdgeForm[Black],*)table2},
(*19 sun*)tU,tV,lUV,

(*20*)tW,{Opacity[.5],White,Disk[w,Abs[m[[2]]-n[[2]]]]},
(*21*)Circle[w,Abs[l[[2]]-n[[2]]]],
(*22*){Black(*White*),EdgeForm[Black],triangle[4,4,4,False](*table3*)},
{White,(*EdgeForm[Black],*)table3},

(*23*)
{Darker@Blue,Thickness[.03],Line[{a,b,e,g,c,a}]}

},
Ticks-> None(*{{0,100},{0,80,120,130}}*), BaseStyle-> 16,AspectRatio-> 1.3,Axes-> True],

(*cresent moon*)
RegionPlot[{(x-25)^2+(y-94.19)^2<21.4^2&&(x-25)^2+(y-102.02)^2>21.4^2},{x,0,100},{y,30,130},PlotStyle->{Red,White}]]

上記のコードからの次のフラグは、憲法の指示に従って作成されます。

色が変更され、下書き線が見やすくなりました。文字は、指示内のポイントとラインを指します。

旗の建設


ところで、世界の国旗はMathematica内で直接呼び出すことができます。例えば:

Graphics[CountryData["Nepal", "Flag"][[1]], ImageSize->{Automatic,200}]

ネパール


1
オム、それは...不正行為のようなものだ
ガブリエレD'Antona

フリオル、はい、同意します。そのため、バリエーションを含めました。
DavidC 14年

1
IMOは、Webから直接読み込まれるリソースがないため、ルールを破ることはありません。
Tyzoid 14年

2
Mathematicaはチートする方法を常に許可します。
ST3

13
@ ST3 Mathematica チートです。
オベロン14年

9

Python

import turtle, sys
from math import sqrt, sin, cos, pi

height = int(sys.argv[1])
width = height / 4 * 3
turtle.screensize(width, height)
t = turtle.Turtle()

# the layout
t.pencolor("#0044cc")
t.fillcolor("#cc2244")
t.pensize(width / 25)
t.pendown()
t.fill(True)
t.forward(width)
t.left(135)
t.forward(width)
t.right(135)
t.forward(width / sqrt(2))
t.right(90)
t.goto(0, height)
t.forward(height)
t.fill(False)
t.penup()

# the bottom star
t.fillcolor("#ffffff")
t.pencolor("#ffffff")
t.pensize(1)
radius = width / 5
x = width / 4
y = height / 4
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(24):
    t.goto(x + radius * (5 + (-1) ** i) / 6 * cos(i * pi / 12), y + radius * (5 + (-1) ** i) / 6 * sin(i * pi / 12))
t.fill(False)
t.penup()

# the top star
radius = width / 9
x = width / 4
y = height * 2 / 3
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(28):
    t.goto(x + radius * (6 + (-1) ** i) / 7 * cos(i * pi / 14), y + radius * (6 + (-1) ** i) / 7 * sin(i * pi / 14))
t.fill(False)
t.penup()

# the moon
radius = width / 5
x = width / 4
y = height / sqrt(2)
t.goto(x + radius, y)
t.pendown()
t.fill(True)
for i in range(30):
    t.goto(x + radius * cos(i * pi / 30), y - radius * sin(i * pi / 30))
for i in range(30):
    t.goto(x - radius * cos(i * pi / 30), y - radius / 2 * sin(i * pi / 30))
t.fill(False)
t.penup()
t.hideturtle()

raw_input("press enter")

PythonのTkタートルを使用python nepal.py 150python nepal.py 200ます。それぞれの例と:

画像


ソースコードに文字数を書くことはできますか?
ガブリエーレダントーナ14年

どうして?これはコードゴルフですか?
mniip 14年

月は正確に8つの三角形を備えている必要があります。あなたのものは9年半です。
ビクターStafusa 14年

@Victor修正。それが厳しい要件であることに気づかなかった
mniip

5

R(長さについては話さないでください)

nepaliflag = function(imaginary = FALSE, color = c("red", "white", "blue")){
    #Draws flag of Nepal with default colors red for inner area, white for Sun and Moon,
    #and blue for outer border
    #Based on instructions from http://www.servat.unibe.ch/icl/np01000_.html
    #Coded by Darshan Baral, with help from Urja Acharya
    #Fork at https://github.com/darshanbaral/R_codes/blob/master/nepali_flag.r
    graphics.off()
    windows(width = 6, height = 8)
    par(mar = c(3, 0.5, 2, 0.5))
    fs = 1 #Arbitrary scale unit for flag
    plot(fs, fs, xlim = c(0, fs), ylim = c(0, 1.5*fs),
         type = "p", pch = NA, axes = FALSE,
         xlab = "", ylab = "",
         asp = 1)

    title(main = "Flag of Nepal")

    #Perpendicular distance from a to bc
    dist_point_line <- function(a, b, c) {
        v1 <- b - c
        v2 <- a - b
        m <- cbind(v1,v2)
        return(abs(det(m))/sqrt(sum(v1*v1)))
    }

    #Distance from a to b
    dist_2_points <- function(a, b) {
        return(sqrt((a[1]-b[1])^2+(a[2]-b[2])^2))
    }

    #Intersection between lines ab and mn
    lines_intersection = function(a,b,m,n){
        A1 = b[2] - a[2]
        B1 = a[1] - b[1]
        C1 = a[1]*b[2] - a[2]*b[1]

        A2 = n[2] - m[2]
        B2 = m[1] - n[1]
        C2 = m[1]*n[2] - m[2]*n[1]      

        Delta = A1*B2 - A2*B1
        if(Delta == 0){
            return("Lines are parallel")
        } else {
            x = (B2*C1 - B1*C2)/Delta
            y = (A1*C2 - A2*C1)/Delta
            return(c(x,y))
        }
    }

    A = c(0,0)
    B = c(fs, 0)
    C = c(0, 4*B[1]/3)
    D = c(0, B[1])
    E = c( (B[1] - B[1]/sqrt(2)), B[1]/sqrt(2) )
    tE = c(E[1], A[2]) #Projecting E onto x-axis
    F = c(0, E[2] )
    G = c(B[1], E[2] )

    F_C = dist_2_points(F,C) #Distance between points F and C
    F_G = dist_2_points(F,G)
    B_tE = dist_2_points(B,tE)
    E_tE = dist_2_points(E,tE)

    upper_angle = pi/2 - atan(F_C/F_G) #Corner angle of upper triangle
    lower_angle = pi/2 - atan(E_tE/B_tE) #Corner angle of bottom triangle

    H = c(B[1]/4,0)
    I = c(H[1], G[2]+(G[1]-H[1])*(C[2]-F[2])/G[1] )
    J = c(0, 0.5*(C[2] + F[2]) )
    K = c( (C[2]-J[2])*G[1]/(C[2]-F[2]), J[2])
    L = c(H[1],J[2])
    M = lines_intersection(J, G, H, I)
    M_BD = dist_point_line(M, B, D) #Perpendicular distance between point M and line BD
    N = c(H[1], M[2]-M_BD)
    O = c(0, M[2])
    L_N = dist_2_points(L, N)
    L_M = dist_2_points(L, M)
    P = c(M[1] - sqrt(L_N^2 - L_M^2), M[2])
    Q = c(M[1] + sqrt(L_N^2 - L_M^2), M[2])
    L_Q = dist_2_points(L, Q)
    M_Q = dist_2_points(M, Q)
    M_N = dist_2_points(M, N)

    #Points of intersection of two circles
    temp_1 = (L_Q^2 - M_N^2 + M_N^2 ) / (2 * M_N)
    temp_2 = sqrt(L_Q^2 - temp_1^2)

    R = c(N[1]-temp_2, L[2]-temp_1)
    S = c(N[1]+temp_2, L[2]-temp_1)
    T = c(H[1], R[2])
    T_N = dist_2_points(T, N)
    T_S = dist_2_points(T, S)
    T_M = dist_2_points(T, M)

    U = c(A[1], 0.5 * (A[2]+F[2]))
    temp_U = c(H[1],U[2])
    V = lines_intersection(U, temp_U, B, E)
    W = c(H[1], U[2])

    #Draw inner polygon in red
    area = rbind(G, C, A, B, E)    
    polygon(area, col = color[1], border = NA)

    #Draw Moon arcs
    symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, fg = NA, bg = color[2])
    symbols (x = M[1], y = M[2], circles=c(M_Q), add =TRUE, inches=FALSE, fg = NA, bg = color[2])
    symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, fg = NA, bg = color[1])
    symbols (x = T[1], y = T[2], circles=c(T_M), add =TRUE, inches=FALSE, bg = color[2], fg = NA)

    #Draw Sun circles
    symbols (x = W[1], y = W[2], circles=c(M_N), add =TRUE, fg = NA, inches=FALSE, bg = NA)

    #Obtain points of triangles of the Sun
    sun_points = c(0,0)
    theta = 0
    for (i in 1:24){
        if (i %% 2 != 0){
            sun_points = rbind( sun_points, c( W[1]+L_N*cos(theta), W[2]+L_N*sin(theta)) )
        } else {
            sun_points = rbind( sun_points, c( W[1]+M_N*cos(theta), W[2]+M_N*sin(theta)) )
        }
        theta = theta + 2*pi/24
    }
    sun_points = sun_points[2:25,]

    #Obtain points of triangles of the Moon
    moon_points = c(0,0)
    theta = 0 - pi/8
    for (i in 1:20){
        if (i %% 2 != 0){
            moon_points = rbind( moon_points, c( T[1]+T_M*cos(theta), T[2]+T_M*sin(theta)) )
        } else {
            moon_points = rbind( moon_points, c( T[1]+T_S*cos(theta), T[2]+T_S*sin(theta)) )
        }
        theta = theta + pi/16
    }
    moon_points = moon_points[2:21,]

    par(xpd = TRUE)

    Ax = c(A[1] - T_N, A[2]) #Shift A to the left with a distance of TN
    Cx = c(C[1] - T_N, C[2])
    Ay = c(A[1], A[2] - T_N)
    By = c(B[1], B[2] - T_N) #Shift B to the bottom with a distance of TN

    Gx = c(G[1] + T_N, G[2])
    Gy = c(G[1], G[2] - T_N)
    Ey = c(E[1], E[2] - T_N)

    Kx = c(K[1] + T_N/cos(upper_angle), K[2]) #a point on parallel line TN away from upper slanting line
    Ix = c(I[1] + T_N/cos(upper_angle), I[2]) #another point on parallel line TN away from upper slanting line

    Bb = c(B[1] + T_N/cos(lower_angle), B[2]) #a point on parallel line TN away from lower slanting line
    Ee = c(E[1] + T_N/cos(lower_angle), E[2]) #another point on parallel line TN away from lower slanting line

    #Point of intersection for offsetting borders in corners
    Ap = lines_intersection(Ax, Cx, Ay, By) 
    Cp = lines_intersection(Kx, Ix, Ax, Cx)
    Gp = lines_intersection(Ix, Kx, Ey, Gy)
    Ep = lines_intersection(Bb, Ee, Ey, Gy)
    Bp = lines_intersection(Ay, By, Ee, Bb)

    #Draw triangles for Sun and Moon
    polygon(sun_points, col = color[2], border = NA)    
    polygon(moon_points, col = color[2], border = NA)   

    #Draw outer border
    borders = rbind(B, Bp, Ap, Cp, Gp, Ep, Bp, B, A, C, G, E, B)                
    polygon(borders, col=color[3], border = NA)

    #Draw white polygon on outside of upper triangle to get rid of part of initial circle
    outer_white = rbind(Cp,Gp,c(Gp[1],Cp[2]))
    polygon(outer_white,col = "white", border = NA)

    #Draw grids, cirlces, and points if imaginary is TRUE
    if (imaginary == TRUE){
        main_points = rbind(A, B, C, D, E, F, G, H, I, J, K, L, M, N, 
                            O, P, Q, R, S, T, U, V, W)  
        points(main_points, pch = 19, cex = 0.5)
        text(main_points, c("A", "B", "C", "D", "E", "F", "G", "H", "I",
                            "J", "K", "L", "M", "N", "O", "P", "Q", "R",
                            "S", "T", "U", "V", "W"), pos = 3, font =2)
        lines(rbind(H,I), lty = 2)
        lines(rbind(J,G), lty = 2)
        lines(rbind(J,K), lty = 2)
        lines(rbind(U,V), lty = 2)

        #Draw Moon arcs
        symbols (x = L[1], y = L[2], circles=c(L_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = M[1], y = M[2], circles=c(M_Q), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = N[1], y = N[2], circles=c(M_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = T[1], y = T[2], circles=c(T_S), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = T[1], y = T[2], circles=c(T_M), add =TRUE, inches=FALSE, bg = NA)

        #Draw Sun circles
        symbols (x = W[1], y = W[2], circles=c(M_N), add =TRUE, inches=FALSE, bg = NA)
        symbols (x = W[1], y = W[2], circles=c(L_N), add =TRUE, inches=FALSE, bg = NA)          
    }
}

ここに画像の説明を入力してください


4

Python(+ PIL)、578

今日は退屈だから

from PIL import Image,ImageDraw
from math import*
I,k,l,m,n,o,_=Image.new('P',(394,480)),479,180,465,232,347,255;D=ImageDraw.Draw(I);P,G=D.polygon,D.pieslice
I.putpalette([_,_,_,0,0,_,_,20,60])
def S(x,y,r,e,l,b):
 p,a,h=[],2*pi/e,r*l;c,d=[0,-a/2][b],[a/2,0][b]
 for i in range(e):p+=[(x+r*cos(i*a+c),y+r*sin(i*a+c)),(x+h*cos(i*a+d),y+h*sin(i*a+d))]
 P(p,fill=0)
P([(0,0),(393,246),(144,246),(375,k),(0,k)],fill=1)
P([(14,25),(o,n),(110,n),(o,m),(14,m)],fill=2)
S(96,o,68,12,.6,0)
G([(31,90),(163,221)],0,l,fill=0)
G([(28,68),(166,200)],0,l,fill=2)
S(96,178,40,16,.7,1)
I.show()

ネパール


月と太陽の両方に2つの余分な三角形があり、10と12ではなく8と10である必要があります:)
ケード
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.