正方形ではない正の整数が与えられた場合、関連するペル方程式の基本解を見つける
詳細
- 基本は、が最小で正の方程式を満たす整数ペアです。(数えられない些細な解が常にあります。)
- は正方形ではないと仮定できます。
例
n x y
1 - -
2 3 2
3 2 1
4 - -
5 9 4
6 5 2
7 8 3
8 3 1
9 - -
10 19 6
11 10 3
12 7 2
13 649 180
14 15 4
15 4 1
16 - -
17 33 8
18 17 4
19 170 39
20 9 2
21 55 12
22 197 42
23 24 5
24 5 1
25 - -
26 51 10
27 26 5
28 127 24
29 9801 1820
30 11 2
31 1520 273
32 17 3
33 23 4
34 35 6
35 6 1
36 - -
37 73 12
38 37 6
39 25 4
40 19 3
41 2049 320
42 13 2
43 3482 531
44 199 30
45 161 24
46 24335 3588
47 48 7
48 7 1
49 - -
50 99 14
51 50 7
52 649 90
53 66249 9100
54 485 66
55 89 12
56 15 2
57 151 20
58 19603 2574
59 530 69
60 31 4
61 1766319049 226153980
62 63 8
63 8 1
64 - -
65 129 16
66 65 8
67 48842 5967
68 33 4
69 7775 936
70 251 30
71 3480 413
72 17 2
73 2281249 267000
74 3699 430
75 26 3
76 57799 6630
77 351 40
78 53 6
79 80 9
80 9 1
81 - -
82 163 18
83 82 9
84 55 6
85 285769 30996
86 10405 1122
87 28 3
88 197 21
89 500001 53000
90 19 2
91 1574 165
92 1151 120
93 12151 1260
94 2143295 221064
95 39 4
96 49 5
97 62809633 6377352
98 99 10
99 10 1
n
s を省略するほうがもっと混乱するだろうと思いました。(ところで私も