45個のNAND(または43)
45は絶対的な最小値のようですが、最大の数字が正しくエンコードされていると仮定することにより、43個のNANDに到達することが可能です。
888、889、898、899、988、989、998、999は、2 MSBを00としてエンコードする必要があり、デコードに必要なのは43 NANDだけです。
ただし、デコードの仕様では、それらは無視されるように指定されています。つまり、何でもかまいません。このより自由な仕様で必要なゲートはさらに少ない可能性があるというのは理にかなった仮定ですが、逆のことが言えます。これには45個のゲートが必要です。この節約により、実際の回路に大きなメリットがもたらされます。
また、いくつかのゲートを含む、はるかに効率的で高速な回路を見つけました。
今回は回路の鉛筆画はありません。おそらく後で。
回路は明白なVerilogコードで表示され、テストを含めて実行する準備ができています。
Verilogコード:
// Densely packed decimal (DPD) to decimal, circuit in Verilog.
// 45 NANDs only, which seems to be minimal.
//
// By Kim Øyhus 2019 (c) into (CC BY-SA 3.0.)
// This work is licensed under the Creative Commons Attribution 3.0
// Unported License. To view a copy of this license, visit
// https://creativecommons.org/licenses/by-sa/3.0/
//
// This is my entry to win this Programming Puzzle & Code Golf
// at Stack Exchange:
// /codegolf/176557/densely-packed-decimal-dpd-to-decimal-with-logic-gates
//
// TASK:
// 3 decimal digits are stored in 10 bits in the DPD format,
// and this circuit transforms them into 3 decimal digits in
// 4 bits each, BCD format.
//
// 45 gates seem to be the smallest possible NAND circuit there is
// for this task, but I can get even lower by a trick, to 43:
// I assume that the largest numbers are correctly encoded.
// 888, 889, 898, 899, 988, 989, 998, 999 are to be encoded
// with the 2 MSB as 00, requiring just 43 NANDs for decoding.
//
// However, in the specification for decoding, they are specified
// to be ignored, meaning they can be anything. It is a reasonable
// assumption that this freer specification could require even fewer
// gates, but the opposite is true. 45 gates are required for this.
// This saving could give real benefits for real circuits.
//
// This DPD format seems to be used a lot for storing decimal numbers
// in computers and IO for ALUs, even though it is stored as 12 bits
// per 3 digits inside the ALUs and for other calculations.
// It is also used in many patents.
module decode1000 ( in_000, in_001, in_002, in_003, in_004, in_005, in_006, in_007, in_008, in_009, out000, out001, out002, out003, out004, out005, out006, out007, out008, out009, out010, out011 );
input in_000, in_001, in_002, in_003, in_004, in_005, in_006, in_007, in_008, in_009;
output out000, out001, out002, out003, out004, out005, out006, out007, out008, out009, out010, out011;
wire wir000, wir001, wir002, wir003, wir004, wir005, wir006, wir007, wir008, wir009, wir010, wir011, wir012, wir013, wir014, wir015, wir016, wir017, wir018, wir019, wir020, wir021, wir022, wir023, wir024, wir025, wir026, wir027, wir028, wir029, wir030, wir031, wir032;
nand gate000 ( wir000, in_007, in_007 );
nand gate001 ( wir001, in_003, in_001 );
nand gate002 ( wir002, in_002, in_003 );
nand gate003 ( wir003, wir001, in_006 );
nand gate004 ( wir004, wir002, in_001 );
nand gate005 ( wir005, wir001, wir001 );
nand gate006 ( wir006, in_005, in_001 );
nand gate007 ( wir007, wir006, in_003 );
nand gate008 ( out008, wir000, wir000 );
nand gate009 ( wir008, wir004, wir007 );
nand gate010 ( wir009, wir005, in_006 );
nand gate011 ( wir010, wir007, wir007 );
nand gate012 ( wir011, wir009, in_002 );
nand gate013 ( wir012, wir011, wir009 );
nand gate014 ( wir013, wir011, wir011 );
nand gate015 ( wir014, in_008, wir013 );
nand gate016 ( wir015, in_009, wir013 );
nand gate017 ( wir016, wir010, wir014 );
nand gate018 ( wir017, wir014, wir005 );
nand gate019 ( wir018, wir015, wir015 );
nand gate020 ( wir019, wir011, wir008 );
nand gate021 ( wir020, wir019, wir006 );
nand gate022 ( wir021, wir010, wir018 );
nand gate023 ( wir022, wir020, wir004 );
nand gate024 ( wir023, wir016, wir008 );
nand gate025 ( out001, wir023, wir023 );
nand gate026 ( out003, wir022, wir022 );
nand gate027 ( wir024, wir005, wir008 );
nand gate028 ( wir025, wir012, wir002 );
nand gate029 ( wir026, wir019, in_003 );
nand gate030 ( wir027, in_004, in_004 );
nand gate031 ( out007, wir024, wir009 );
nand gate032 ( out011, wir026, wir026 );
nand gate033 ( wir028, wir017, in_005 );
nand gate034 ( wir029, in_000, in_000 );
nand gate035 ( wir030, wir026, in_008 );
nand gate036 ( out005, wir028, wir028 );
nand gate037 ( out009, wir030, wir030 );
nand gate038 ( out000, wir029, wir029 );
nand gate039 ( wir031, wir026, in_009 );
nand gate040 ( out004, wir027, wir027 );
nand gate041 ( out010, wir031, wir031 );
nand gate042 ( wir032, out003, wir018 );
nand gate043 ( out006, wir003, wir032 );
nand gate044 ( out002, wir025, wir021 );
endmodule
module test;
reg [ 9:0] AB; // input DPD
wire [11:0] C; // output BCD
decode1000 U1 (
.in_000 (AB[ 0]),
.in_001 (AB[ 1]),
.in_002 (AB[ 2]),
.in_003 (AB[ 3]),
.in_004 (AB[ 4]),
.in_005 (AB[ 5]),
.in_006 (AB[ 6]),
.in_007 (AB[ 7]),
.in_008 (AB[ 8]),
.in_009 (AB[ 9]),
.out000 ( C[ 0]),
.out001 ( C[ 1]),
.out002 ( C[ 2]),
.out003 ( C[ 3]),
.out004 ( C[ 4]),
.out005 ( C[ 5]),
.out006 ( C[ 6]),
.out007 ( C[ 7]),
.out008 ( C[ 8]),
.out009 ( C[ 9]),
.out010 ( C[10]),
.out011 ( C[11])
);
initial AB=0; //unary=0; binary=0
always #1 AB = AB+1;
initial begin
$display("\t\ttime,\tinn 10bit \tout 3x4bit");
$monitor("%d,\t%b %b %b\t%b %b %b\t %d%d%d",$time, AB[9:7],AB[6:4],AB[3:0], C[11:8], C[7:4], C[3:0], C[11:8], C[7:4], C[3:0]);
end
initial #1023 $finish;
endmodule
// How I run and test it:
// iverilog -o decode1000 decode1000.v
// vvp decode1000