パイソン(56)
f=lambda n,k:k<1and 1or f(n-1,k-1)*n/k;print f(*input())
ゴルフされていないコードと、二項係数を計算するためのショートカットの説明。(注:39文字バージョンに到達するために私が理解していない洞察がいくつかあります。このアプローチがあなたをそこに導くとは思いません。)
# Since choose(n,k) =
#
# n!/((n-k)!k!)
#
# [n(n-1)...(n-k+1)][(n-k)...(1)]
# = -------------------------------
# [(n-k)...(1)][k(k-1)...(1)]
#
# We can cancel the terms:
#
# [(n-k)...(1)]
#
# as they appear both on top and bottom, leaving:
#
# n (n-1) (n-k+1)
# - ----- ... -------
# k (k-1) (1)
#
# which we might write as:
#
# choose(n,k) = 1, if k = 0
# = (n/k)*choose(n-1, k-1), otherwise
#
def choose(n,k):
if k < 1:
return 1
else:
return choose(n-1, k-1) * n/k
# input() evaluates the string it reads from stdin, so "5,2" becomes
# (5,2) with no further action required on our part.
#
# In the golfed version, we make use of the `*` unpacking operator,
# to unpack the tuple returned by input() directly into the arguments
# of f(), without the need for intermediate variables n, k at all.
#
n, k = input()
# This line is left as an exercise to the reader.
print choose(n, k)