91ステップ
完全な証拠:
1. (A → B) → (¬¬A → (A → B)) LS1
2. (¬¬A → (A → B)) → ((¬¬A → A) → (¬¬A → B)) LS2
3. ((¬¬A → (A → B)) → ((¬¬A → A) → (¬¬A → B))) → ((A → B) → ((¬¬A → (A → B)) → ((¬¬A → A) → (¬¬A → B)))) LS1
4. (A → B) → ((¬¬A → (A → B)) → ((¬¬A → A) → (¬¬A → B))) MP 3,2
5. ((A → B) → ((¬¬A → (A → B)) → ((¬¬A → A) → (¬¬A → B)))) → (((A → B) → (¬¬A → (A → B))) → ((A → B) → ((¬¬A → A) → (¬¬A → B)))) LS2
6. ((A → B) → (¬¬A → (A → B))) → ((A → B) → ((¬¬A → A) → (¬¬A → B))) MP 5,4
7. (A → B) → ((¬¬A → A) → (¬¬A → B)) MP 6,1
8. ¬A → (¬¬(B → (¬A → A)) → ¬A) LS1
9. (¬¬(B → (¬A → A)) → ¬A) → (A → ¬(B → (¬A → A))) LS3
10. ((¬¬(B → (¬A → A)) → ¬A) → (A → ¬(B → (¬A → A)))) → (¬A → ((¬¬(B → (¬A → A)) → ¬A) → (A → ¬(B → (¬A → A))))) LS1
11. ¬A → ((¬¬(B → (¬A → A)) → ¬A) → (A → ¬(B → (¬A → A)))) MP 10,9
12. (¬A → ((¬¬(B → (¬A → A)) → ¬A) → (A → ¬(B → (¬A → A))))) → ((¬A → (¬¬(B → (¬A → A)) → ¬A)) → (¬A → (A → ¬(B → (¬A → A))))) LS2
13. (¬A → (¬¬(B → (¬A → A)) → ¬A)) → (¬A → (A → ¬(B → (¬A → A)))) MP 12,11
14. ¬A → (A → ¬(B → (¬A → A))) MP 13,8
15. (¬A → (A → ¬(B → (¬A → A)))) → ((¬A → A) → (¬A → ¬(B → (¬A → A)))) LS2
16. (¬A → A) → (¬A → ¬(B → (¬A → A))) MP 15,14
17. (¬A → ¬(B → (¬A → A))) → ((B → (¬A → A)) → A) LS3
18. ((¬A → ¬(B → (¬A → A))) → ((B → (¬A → A)) → A)) → ((¬A → A) → ((¬A → ¬(B → (¬A → A))) → ((B → (¬A → A)) → A))) LS1
19. (¬A → A) → ((¬A → ¬(B → (¬A → A))) → ((B → (¬A → A)) → A)) MP 18,17
20. ((¬A → A) → ((¬A → ¬(B → (¬A → A))) → ((B → (¬A → A)) → A))) → (((¬A → A) → (¬A → ¬(B → (¬A → A)))) → ((¬A → A) → ((B → (¬A → A)) → A))) LS2
21. ((¬A → A) → (¬A → ¬(B → (¬A → A)))) → ((¬A → A) → ((B → (¬A → A)) → A)) MP 20,19
22. (¬A → A) → ((B → (¬A → A)) → A) MP 21,16
23. (¬A → A) → (B → (¬A → A)) LS1
24. ((¬A → A) → ((B → (¬A → A)) → A)) → (((¬A → A) → (B → (¬A → A))) → ((¬A → A) → A)) LS2
25. ((¬A → A) → (B → (¬A → A))) → ((¬A → A) → A) MP 24,22
26. (¬A → A) → A MP 25,23
27. ¬¬A → (¬A → ¬¬A) LS1
28. (¬A → ¬¬A) → (¬A → A) LS3
29. ((¬A → ¬¬A) → (¬A → A)) → (¬¬A → ((¬A → ¬¬A) → (¬A → A))) LS1
30. ¬¬A → ((¬A → ¬¬A) → (¬A → A)) MP 29,28
31. (¬¬A → ((¬A → ¬¬A) → (¬A → A))) → ((¬¬A → (¬A → ¬¬A)) → (¬¬A → (¬A → A))) LS2
32. (¬¬A → (¬A → ¬¬A)) → (¬¬A → (¬A → A)) MP 31,30
33. ¬¬A → (¬A → A) MP 32,27
34. ((¬A → A) → A) → (¬¬A → ((¬A → A) → A)) LS1
35. ¬¬A → ((¬A → A) → A) MP 34,26
36. (¬¬A → ((¬A → A) → A)) → ((¬¬A → (¬A → A)) → (¬¬A → A)) LS2
37. (¬¬A → (¬A → A)) → (¬¬A → A) MP 36,35
38. ¬¬A → A MP 37,33
39. (¬¬A → A) → ((A → B) → (¬¬A → A)) LS1
40. (A → B) → (¬¬A → A) MP 39,38
41. ((A → B) → ((¬¬A → A) → (¬¬A → B))) → (((A → B) → (¬¬A → A)) → ((A → B) → (¬¬A → B))) LS2
42. ((A → B) → (¬¬A → A)) → ((A → B) → (¬¬A → B)) MP 41,7
43. (A → B) → (¬¬A → B) MP 42,40
44. ¬¬B → (¬¬(B → (¬¬B → ¬B)) → ¬¬B) LS1
45. (¬¬(B → (¬¬B → ¬B)) → ¬¬B) → (¬B → ¬(B → (¬¬B → ¬B))) LS3
46. ((¬¬(B → (¬¬B → ¬B)) → ¬¬B) → (¬B → ¬(B → (¬¬B → ¬B)))) → (¬¬B → ((¬¬(B → (¬¬B → ¬B)) → ¬¬B) → (¬B → ¬(B → (¬¬B → ¬B))))) LS1
47. ¬¬B → ((¬¬(B → (¬¬B → ¬B)) → ¬¬B) → (¬B → ¬(B → (¬¬B → ¬B)))) MP 46,45
48. (¬¬B → ((¬¬(B → (¬¬B → ¬B)) → ¬¬B) → (¬B → ¬(B → (¬¬B → ¬B))))) → ((¬¬B → (¬¬(B → (¬¬B → ¬B)) → ¬¬B)) → (¬¬B → (¬B → ¬(B → (¬¬B → ¬B))))) LS2
49. (¬¬B → (¬¬(B → (¬¬B → ¬B)) → ¬¬B)) → (¬¬B → (¬B → ¬(B → (¬¬B → ¬B)))) MP 48,47
50. ¬¬B → (¬B → ¬(B → (¬¬B → ¬B))) MP 49,44
51. (¬¬B → (¬B → ¬(B → (¬¬B → ¬B)))) → ((¬¬B → ¬B) → (¬¬B → ¬(B → (¬¬B → ¬B)))) LS2
52. (¬¬B → ¬B) → (¬¬B → ¬(B → (¬¬B → ¬B))) MP 51,50
53. (¬¬B → ¬(B → (¬¬B → ¬B))) → ((B → (¬¬B → ¬B)) → ¬B) LS3
54. ((¬¬B → ¬(B → (¬¬B → ¬B))) → ((B → (¬¬B → ¬B)) → ¬B)) → ((¬¬B → ¬B) → ((¬¬B → ¬(B → (¬¬B → ¬B))) → ((B → (¬¬B → ¬B)) → ¬B))) LS1
55. (¬¬B → ¬B) → ((¬¬B → ¬(B → (¬¬B → ¬B))) → ((B → (¬¬B → ¬B)) → ¬B)) MP 54,53
56. ((¬¬B → ¬B) → ((¬¬B → ¬(B → (¬¬B → ¬B))) → ((B → (¬¬B → ¬B)) → ¬B))) → (((¬¬B → ¬B) → (¬¬B → ¬(B → (¬¬B → ¬B)))) → ((¬¬B → ¬B) → ((B → (¬¬B → ¬B)) → ¬B))) LS2
57. ((¬¬B → ¬B) → (¬¬B → ¬(B → (¬¬B → ¬B)))) → ((¬¬B → ¬B) → ((B → (¬¬B → ¬B)) → ¬B)) MP 56,55
58. (¬¬B → ¬B) → ((B → (¬¬B → ¬B)) → ¬B) MP 57,52
59. (¬¬B → ¬B) → (B → (¬¬B → ¬B)) LS1
60. ((¬¬B → ¬B) → ((B → (¬¬B → ¬B)) → ¬B)) → (((¬¬B → ¬B) → (B → (¬¬B → ¬B))) → ((¬¬B → ¬B) → ¬B)) LS2
61. ((¬¬B → ¬B) → (B → (¬¬B → ¬B))) → ((¬¬B → ¬B) → ¬B) MP 60,58
62. (¬¬B → ¬B) → ¬B MP 61,59
63. ¬¬¬B → (¬¬B → ¬¬¬B) LS1
64. (¬¬B → ¬¬¬B) → (¬¬B → ¬B) LS3
65. ((¬¬B → ¬¬¬B) → (¬¬B → ¬B)) → (¬¬¬B → ((¬¬B → ¬¬¬B) → (¬¬B → ¬B))) LS1
66. ¬¬¬B → ((¬¬B → ¬¬¬B) → (¬¬B → ¬B)) MP 65,64
67. (¬¬¬B → ((¬¬B → ¬¬¬B) → (¬¬B → ¬B))) → ((¬¬¬B → (¬¬B → ¬¬¬B)) → (¬¬¬B → (¬¬B → ¬B))) LS2
68. (¬¬¬B → (¬¬B → ¬¬¬B)) → (¬¬¬B → (¬¬B → ¬B)) MP 67,66
69. ¬¬¬B → (¬¬B → ¬B) MP 68,63
70. ((¬¬B → ¬B) → ¬B) → (¬¬¬B → ((¬¬B → ¬B) → ¬B)) LS1
71. ¬¬¬B → ((¬¬B → ¬B) → ¬B) MP 70,62
72. (¬¬¬B → ((¬¬B → ¬B) → ¬B)) → ((¬¬¬B → (¬¬B → ¬B)) → (¬¬¬B → ¬B)) LS2
73. (¬¬¬B → (¬¬B → ¬B)) → (¬¬¬B → ¬B) MP 72,71
74. ¬¬¬B → ¬B MP 73,69
75. (¬¬¬B → ¬B) → (B → ¬¬B) LS3
76. B → ¬¬B MP 75,74
77. (B → ¬¬B) → (¬¬A → (B → ¬¬B)) LS1
78. ¬¬A → (B → ¬¬B) MP 77,76
79. (¬¬A → (B → ¬¬B)) → ((¬¬A → B) → (¬¬A → ¬¬B)) LS2
80. (¬¬A → B) → (¬¬A → ¬¬B) MP 79,78
81. ((¬¬A → B) → (¬¬A → ¬¬B)) → ((A → B) → ((¬¬A → B) → (¬¬A → ¬¬B))) LS1
82. (A → B) → ((¬¬A → B) → (¬¬A → ¬¬B)) MP 81,80
83. ((A → B) → ((¬¬A → B) → (¬¬A → ¬¬B))) → (((A → B) → (¬¬A → B)) → ((A → B) → (¬¬A → ¬¬B))) LS2
84. ((A → B) → (¬¬A → B)) → ((A → B) → (¬¬A → ¬¬B)) MP 83,82
85. (A → B) → (¬¬A → ¬¬B) MP 84,43
86. (¬¬A → ¬¬B) → (¬B → ¬A) LS3
87. ((¬¬A → ¬¬B) → (¬B → ¬A)) → ((A → B) → ((¬¬A → ¬¬B) → (¬B → ¬A))) LS1
88. (A → B) → ((¬¬A → ¬¬B) → (¬B → ¬A)) MP 87,86
89. ((A → B) → ((¬¬A → ¬¬B) → (¬B → ¬A))) → (((A → B) → (¬¬A → ¬¬B)) → ((A → B) → (¬B → ¬A))) LS2
90. ((A → B) → (¬¬A → ¬¬B)) → ((A → B) → (¬B → ¬A)) MP 89,88
91. (A → B) → (¬B → ¬A) MP 90,85
オンラインでお試しください!
5つの補題を使用した、より人間が読めるバージョン:
Lemma 1: From A → B and B → C, instantiate A → C. (5 steps)
1. B → C given
2. (B → C) → (A → (B → C)) L.S.1
3. A → (B → C) M.P. (1,2)
4. (A → (B → C)) → ((A → B) → (A → C)) L.S.2
5. (A → B) → (A → C) M.P. (3,4)
6. A → B given
7. A → C M.P. (6,5)
Lemma 2: ¬A → (A → B) (7 steps)
1. ¬A → (¬B → ¬A) L.S.1
2. (¬B → ¬A) → (A → B) L.S.3
3. ¬A → (A → B) Lemma 1 (1,2)
Lemma 3: From A → (B → C) and A → B, instantiate A → C. (3 steps)
1. A → (B → C) given
2. (A → (B → C)) → ((A → B) → (A → C)) L.S.2
3. (A → B) → (A → C) M.P. (1,2)
4. A → B given
5. A → C M.P. (4,3)
Lemma 4: ¬¬A → A (31 steps)
1. ¬A → (A → ¬(B → (¬A → A))) Lemma 2
2. (¬A → (A → ¬(B → (¬A → A)))) →
((¬A → A) → (¬A → ¬(B → (¬A → A)))) L.S.2
3. (¬A → A) → (¬A → ¬(B → (¬A → A))) M.P. (1,2)
4. (¬A → ¬(B → (¬A → A))) →((B → (¬A → A)) → A) L.S.3
5. (¬A → A) → ((B → (¬A → A)) → A) Lemma 1 (3,4)
6. (¬A → A) → (B → (¬A → A)) L.S.1
7. (¬A → A) → A Lemma 3 (5,6)
8. ¬¬A → (¬A → A) Lemma 2
9. ¬¬A → A Lemma 1 (8,7)
Lemma 5: (A → B) → (¬¬A → B) (43 steps)
1. (A → B) → (¬¬A → (A → B)) L.S.1
2. (¬¬A → (A → B)) → ((¬¬A → A) → (¬¬A → B)) L.S.2
3. (A → B) → ((¬¬A → A) → (¬¬A → B)) Lemma 1 (1,2)
4. ¬¬A → A Lemma 4
5. (¬¬A → A) → ((A → B) → (¬¬A → A)) L.S.1
6. (A → B) → (¬¬A → A) M.P. (4,5)
7. (A → B) → (¬¬A → B) Lemma 3 (3,6)
Theorem: (A → B) → (¬B → ¬A)
1. (A → B) → (¬¬A → B) Lemma 5
2. ¬¬¬B → ¬B Lemma 4
3. (¬¬¬B → ¬B) → (B → ¬¬B) L.S.3
4. B → ¬¬B M.P. (2,3)
5. (B → ¬¬B) → (¬¬A → (B → ¬¬B)) L.S.1
6. ¬¬A → (B → ¬¬B) M.P. (4,5)
7. (¬¬A → (B → ¬¬B)) → ((¬¬A → B) → (¬¬A → ¬¬B)) L.S.2
8. (¬¬A → B) → (¬¬A → ¬¬B) M.P. (6,7)
9. (A → B) → (¬¬A → ¬¬B) Lemma 1 (1,8)
10.(¬¬A → ¬¬B) → (¬B → ¬A) L.S.3
11.(A → B) → (¬B → ¬A) Lemma 1 (9,10)