ステップを(ランダムに)埋めてください!


8

これは、APL CodeGolf のオータムトーナメントホール9 です。私はそこで問題の原作者なので、ここに再投稿することができます。


(1つ以上の次元の)単純な(長方形で、ギザギザのない)ブール配列を指定すると、最初の配列が入力と同一で、最後がすべて真であるような形の配列のリストを返します。すべての中間ステップには、左側の隣接ステップよりも1つ多くの真理がなければなりません(ただし、それ以外は同じです)。ステップごとに、変更されるビットを疑似ランダムに選択する必要があります(必要に応じてシードを選択できます)。

[0] 与える [[0],[1]]

[[0]] 与える [[[0]],[[1]]]

[[[1,1,1],[1,1,1],[1,1,1]],[[1,1,1],[1,1,1],[1,1,1]],[[1,1,1],[1,1,1],[1,1,1]]] 与える [[[[1,1,1],[1,1,1],[1,1,1]],[[1,1,1],[1,1,1],[1,1,1]],[[1,1,1],[1,1,1],[1,1,1]]]]

以下の例の結果は、もちろんランダム性により異なる場合があります。これらは有効な出力の例にすぎません。

[0,1,0,0] 与える [[0,1,0,0],[1,1,0,0],[1,1,0,1],[1,1,1,1]]

[[0,1,0],[0,0,1]] 与える [[[0,1,0],[0,0,1]],[[1,1,0],[0,0,1]],[[1,1,0],[0,1,1]],[[1,1,1],[0,1,1]],[[1,1,1],[1,1,1]]]

[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0]] 与える [[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,1,0,1,0],[0,1,0,0,0,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,1,0,1,0],[0,1,0,0,0,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,1,0,1,0],[0,1,0,0,0,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,0],[1,1,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,0],[1,1,1,0,0,0,0,1],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,0,0,1,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,0],[1,1,1,0,0,0,0,1],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,0,0,1,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,0,0,0,1],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,0,1,1,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,0,0,0,1],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,0,0,0,1],[0,0,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,0],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,0,0,0,1],[0,1,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,1],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,0,0,0,1],[0,1,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,0,1,1,0],[0,0,0,0,1,0,0,1],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,0,0,1],[0,1,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,1,1,1,0],[0,0,0,0,1,0,0,1],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,0,0,1],[0,1,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,0,0,1,0,0,1],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,0,0,1],[0,1,0,1,0,0,0,0]],[[1,0,1,0,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,0,0,1,0,0,1],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,0,1,1],[0,1,0,1,0,0,0,0]],[[1,0,1,1,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,0,0,1,0,0,1],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,0,1,1],[0,1,0,1,0,0,0,0]],[[1,0,1,1,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,0,1,1],[0,1,0,1,0,0,0,0]],[[1,0,1,1,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,0,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,0,0,0,0]],[[1,0,1,1,0,0,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,0,0,0,0]],[[1,0,1,1,0,1,0,0],[0,0,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,0,0,0,0]],[[1,0,1,1,0,1,0,0],[0,1,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,0,0,0,0]],[[1,0,1,1,0,1,0,0],[0,1,1,1,1,0,1,0],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,0,0,0,1]],[[1,0,1,1,0,1,0,0],[0,1,1,1,1,0,1,1],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[0,1,0,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,0,0,0,1]],[[1,0,1,1,0,1,0,0],[0,1,1,1,1,0,1,1],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[0,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,0,0,0,1]],[[1,0,1,1,0,1,0,0],[0,1,1,1,1,0,1,1],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[0,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,1,0,0,1]],[[1,0,1,1,0,1,0,0],[0,1,1,1,1,0,1,1],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,1,0,0,1]],[[1,1,1,1,0,1,0,0],[0,1,1,1,1,0,1,1],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,1,0,0,1]],[[1,1,1,1,0,1,1,0],[0,1,1,1,1,0,1,1],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,0,1,1,0,0,1]],[[1,1,1,1,0,1,1,0],[0,1,1,1,1,0,1,1],[0,0,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1]],[[1,1,1,1,0,1,1,0],[0,1,1,1,1,0,1,1],[0,1,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1]],[[1,1,1,1,0,1,1,0],[0,1,1,1,1,0,1,1],[1,1,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,0],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1]],[[1,1,1,1,0,1,1,0],[0,1,1,1,1,0,1,1],[1,1,0,0,1,1,1,1],[0,0,1,0,1,0,0,1],[1,1,0,0,1,0,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1]],[[1,1,1,1,0,1,1,0],[0,1,1,1,1,0,1,1],[1,1,0,0,1,1,1,1],[0,1,1,0,1,0,0,1],[1,1,0,0,1,0,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1]],[[1,1,1,1,0,1,1,0],[0,1,1,1,1,0,1,1],[1,1,0,0,1,1,1,1],[0,1,1,0,1,0,0,1],[1,1,0,0,1,1,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1]],[[1,1,1,1,1,1,1,0],[0,1,1,1,1,0,1,1],[1,1,0,0,1,1,1,1],[0,1,1,0,1,0,0,1],[1,1,0,0,1,1,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1]],[[1,1,1,1,1,1,1,0],[0,1,1,1,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,0,1,0,0,1],[1,1,0,0,1,1,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1]],[[1,1,1,1,1,1,1,0],[0,1,1,1,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,0,1,0,0,1],[1,1,0,0,1,1,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1]],[[1,1,1,1,1,1,1,0],[0,1,1,1,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1],[1,1,0,0,1,1,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1]],[[1,1,1,1,1,1,1,0],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1],[1,1,0,0,1,1,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1],[1,1,0,0,1,1,1,1],[1,1,1,0,1,0,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1],[1,1,0,0,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,0,1],[1,1,0,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1],[1,1,0,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,0,1,1],[1,1,0,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,1,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,0,1,1],[1,1,0,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,0,1,1,1,1],[0,1,1,1,1,1,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,0,1,1],[1,1,0,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,0,1,1],[1,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,0,1,1],[1,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,0,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1]],[[1,1,1,1,1,1,1,1],[0,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1]],[[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1],[1,1,1,1,1,1,1,1]]]


1
これらの課題により、R / S開発者が下した決定に疑問を抱くようになりました...
Giuseppe

@Giuseppe R / S開発者ですか?
アダム

R(およびS-plus)はSの実装であるため、多くの基本R関数は、Sが指定する方法で動作するか、S(またはさらに悪いことに、S-plus)との互換性を維持するために維持されます。これらの課題のいくつかを解決しようとしているときに遭遇した予期しない動作の一部を誰が非難するのかわかりません!
ジュゼッペ

回答:


3

ゼリー、12バイト

F¬0TX$¦ÐĿ¬ṁ€

オンラインでお試しください!

使い方

F¬0TX$¦ÐĿ¬ṁ€  Main link. Argument: A (array)

F             Flatten A.
 ¬            Negate all Booleans in the result.
       DĿ     Repeatedly call the link to the left until the results are no longer
              unique. Yield the array of all unique results.
      ¦         Sparse application:
   TX$            Pseudo-randomly select an index of a 1.
  0               Replace the element at that index with 0.
         ¬    Once again negate all Booleans.
          ṁ€  Shape each flat array in the result like A.


1

Wolfram言語(Mathematica)、61バイト

FoldList[ReplacePart[#,#2->1]&,#,RandomSample@Position[#,0]]&

オンラインでお試しください!

説明

Position[#,0]

0ネストされた配列内のsのすべての位置を見つけます。

RandomSample@...

ポジションのリストをシャッフルします。

FoldList[...&,#,...]

入力を開始値として使用して、シャッフルされた位置のリストの上で左側の関数を折りたたみ、結果の折りたたみ操作のすべてのステップを収集します。

ReplacePart[#,#2->1]

指定された位置の値をに設定します1


1

R93 82 74バイト

function(a)Reduce(function(x,y){x[y]=T;x},sample(as.list(which(!a))),a,,T)

オンラインでお試しください!

R logical arrayを取り、sのa listを返しますlogical array

厄介なのsample(as.list(which(!a)))は、エッジケースを防ぐことsampleです。場合a、正確に一つを含むFALSEインデックスの値をisampleランダム順列返す1:iサイズのランダムサンプルではなく1値のみを含有するiIを用いて、as.list防止するwhich(!a)ことからnumeric

のRドキュメントsampleは、この動作について少しお詫び申し上げます。

xが長さ1の場合、は数値(の意味でis.numeric)でありx >= 1、サンプルによるサンプリングは1:xから行われます。などの呼び出しでxの長さが異なる場合、この便利な機能が望ましくない動作を引き起こす可能性があることに注意しくださいsample(x)



0

ゼリー、19バイト

F¬TṬ€$$o€$ṁ€µX$ÐĿṖṖ

オンラインでお試しください!

おそらく短くなる可能性があります

説明

F¬TṬ€$$o€$ṁ€µX$ÐĿṖṖ  Main Link
               ÐĿ    While results are unique:
F                    Flatten the array
     $$              3 links will form a monad
 ¬                   Logical NOT on each element
  T                  Find indices of 1s (0s in the original)
    €                For each 0 in the original
   Ṭ                 Make an array of all 0s containing one 1 there
         $           2 links will form a monad
        €            For each of the mask arrays
       o             Vectorizing logical OR it with the original (flat) array
           €         For each of these subarrays
          ṁ          Reshape it to the original array's shape
            µ        Start a new monadic chain, using the list of possible next steps as the argument
              $      2 links will form a monad
             X       Pick a random element
                 ṖṖ  Remove the last two elements (0 and '' which are selected by X when the list is empty)

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.