プライムアリ🐜


50

「prime ant」は、整数をナビゲートし、素数だけが残るまで整数を分割する頑固な動物です。


最初に、2以上のすべての整数を含む無限配列Aがあります。 [2,3,4,5,6,.. ]

ましょうp配列上のアリの位置になります。最初はp = 0(配列は0でインデックス付けされています)

ターンごとに、アリは次のように移動します。

  • 場合はA[p]素数である、次の位置へ移動アリ:p ← p+1
  • それ以外の場合A[p]、が合成数の場合q、より小さい除数> 1とします。で除算A[p]q、に加算qA[p-1]ます。アリは前の位置に移動します。p ← p-1

アリの最初の動きは次のとおりです。

 2  3  4  5  6  7  8  9  ... 
 ^
 2  3  4  5  6  7  8  9  ... 
    ^
 2  3  4  5  6  7  8  9  ... 
       ^
 2  5  2  5  6  7  8  9  ... 
    ^
 2  5  2  5  6  7  8  9  ... 
       ^
 2  5  2  5  6  7  8  9  ... 
          ^
 2  5  2  5  6  7  8  9  ... 
             ^
 2  5  2  7  3  7  8  9  ... 
          ^

プログラムは、n移動後にアリの位置を出力する必要があります。(想定できますn <= 10000

テストケース:

0 => 0
10 => 6
47 => 9
4734 => 274
10000 => 512

編集。1インデックス付きリストを使用することもできます。上記のテストケースの結果1、7、10、275、513を表示することは許容されます。

これはcode-golfであるため、バイト単位で最も短いコードのコードが優先されます。


32
Hot Network Questionsでこれを見たときに、画面にアリがいると正直に思いました。
コドスジョンソン

14
シーケンスが任意の大きさで明確に定義されているのnか(または、複合ケースがアリをイニシャルの左側にプッシュできるのか)疑問に思い2ます。
マーティンエンダー

1
@SuperChafouinので、テストケースの出力は次のようになります1,7,10,275,513。または、出力と一致させる必要がありますか。
トムカーペンター

12
@MartinEnderもう1つの未解決の問題は、7を超える素数が最終的に残される可能性があるかどうかです。
アーナルド

2
@Arnauld Out n = 1,000,000,000(p = 17156661)まで移動すると、nとpの関係はp = n /(ln(n)* ln(ln(n)))に非常に近くなります。
ペンギノ

回答:


11

アリス、45バイト

/o
\i@/.&wqh!]k.&[&w;;?c]dt.n$k&;[.?~:![?+!kq

オンラインでお試しください!

ほとんど簡単な実装。

nAliceのループ時間は、通常、リターンアドレスをプッシュし、n-1各反復の最後にで戻りますk。ループの最後の時間では、k命令は戻る場所がなく、実行は前方に進みます。

このプログラムは、同じk命令を使用して、数が素数のときに早期に停止します。その結果、最後の反復では常にアリが左に移動します。このバグを補うためn+1に、インデックスが1の配列で反復を行います。これにより、必要な結果が正確に得られます(また、ケースn=0は無料で提供されます)。


7

Python 2、120バイト

p=0
A=range(2,input()+2)
for _ in A:
 for q in range(2,A[p]):
	if A[p]%q<1:A[p]/=q;p-=1;A[p]+=q;break
 else:p+=1
print p

オンラインでお試しください!

ああ、珍しいforelseループ!else場合句は、実行for体がされていない経由して終了しましたbreak。私たちの場合、これはすべてqのをチェックし、それらのいずれも分割するものが見つからなかったことを意味しますp


7

オクターブ109 103101 94バイト

function i=a(n)i=1;for l=z=2:n+1
if nnz(q=factor(z(i)))>1
z(i--)/=p=q(1);z(i--)+=p;end
i++;end

オンラインでお試しください!

このコードは1インデックスで位置を出力するため、テストケースの出力は次のとおりです。

0 => 1
10 => 7
47 => 10
4734 => 275
10000 => 513

このバージョンはいくつかのOctave最適化を使用するため、MATLABとの互換性はありません。以下のコードは、MATLAB互換バージョンです。


MATLAB、130 123 118 117バイト

function i=a(n)
z=2:n+1;i=1;for l=z
q=factor(z(i));if nnz(q)>1
z(i)=z(i)/q(1);i=i-1;z(i)=z(i)+q(1);else
i=i+1;end
end

Octaveバージョンと同様に1インデックスを使用します。MATLABのすべてのテストケースに対してテストしました。例として、100000での出力は3675(1インデックス)です。

上記のコードのコメント版:

function i=a(n)
    z=2:n+1;                %Create our field of numbers
    i=1;                    %Start of at index of 1 (MATLAB uses 1-indexing)
    for l=1:n               %For the required number of iterations
        q=factor(z(i));     %Calculate the prime factors of the current element
        if nnz(q)>1         %If there are more than one, then not prime
            z(i)=z(i)/q(1); %So divide current by the minimum
            i=i-1;          %Move back a step
            z(i)=z(i)+q(1); %And add on the minimum to the previous.
        else
            i=i+1;          %Otherwise we move to the next step
        end
    end

興味深いことに、これはアリの位置とnの最初の10000の値の反復回数です。

アリの位置

Antはおそらく無限になりそうですが、誰が知っているように、見た目は欺くことができます。


  • MATLAB:ブラケットのfor代わりにwhileブラケットを削除して6バイト保存if-ありがとう@Giuseppe
  • MATLAB:2バイト節約-ありがとう@Sanchises
  • Octave:Octave \=+=操作を使用して10バイト節約-ありがとう@Giuseppe
  • オクターブ:i++andで2バイト節約i---ありがとう@LuisMendo
  • オクターブ:7バイト節約-ありがとう@Sanchises

TIO上の仕事にそれを得るために、私はあなたが必要だと思うend関数のシグネチャと一致する
ジュゼッペ・

@ジュゼッペああ、わかりました。MATLABでは、末尾endはオプションです。
トムカーペンター

あなたは私が(n)を=開始時に、@(n)を使用して代わりの機能を使って、無名関数を作ることができます
Michthan

@Michthanは、MATLABではこれを実行できません。ループがあるため、Octaveでも可能だとは思いませんか?
トムカーペンター

1
endOctaveでも末尾はオプションです。ここで必要なのは、関数の後にコードがあるためです
ルイスメンドー

6

JavaScript(ES6)、91バイト

f=(n,a=[p=0])=>n--?f(n,a,(P=n=>++x<n?n%x?P(n):a[a[p]/=x,--p]+=x:p++)(a[p]=a[p]||p+2,x=1)):p

デモ

注意:すべてのテストケースに合格するには、エンジンのデフォルトのスタックサイズを増やす必要がある場合があります。

オンラインでお試しください!


6

ハスケル108の 106 94バイト

([0]#[2..]!!)
(a:b)#(p:q)=length b:([b#(a+d:div p d:q)|d<-[2..p-1],mod p d<1]++[(p:a:b)#q])!!0

オンラインでお試しください!使用例:([0]#[2..]!!) 10yields 6(0-indexed)。

この関数#は、配列の逆のフロントと配列[p-1, p-2, ..., 1]の無限の残りの2つのリストで動作し[p, p+1, p+2, ...]ます。無限の位置のリストを作成し、そこからninputが与えられるとth番目の位置が返されますn

パターン((a:b)#(p:q))p、アリの現在の位置の値と前の位置の値にバインドしますab位置1から配列の接頭辞であるp-2q位置から無限の残りp+1

再帰呼び出しのリストを次の方法で作成します:(1より大きく、より小さい)の各除数dを昇順で見て、それぞれに追加します。つまり、現在の値が除算され、アリが移動しますに追加される左への1ステップ。次に、このリストの最後に追加します。これは、アリが1ステップ右に移動することを示します。ppb#(a+d:div p d:q)pdda(p:a:b)#q

次に、リストからこれらの再帰呼び出しの最初を取得し、プレフィックスリストの長さと一致する現在の位置を追加しbます。除数は昇順であるため、再帰呼び出しのリストから最初のものを選択すると、最小のものが使用されます。さらに、(p:a:b)#qはリストの最後に追加されるため、除数がない場合にのみ選択され、pしたがって素数になります。

編集:
関数のリストを降順から昇順に切り替えて-2バイト。
カウンターを処理する代わりに無限リストにインデックスを付けるというZgarbのアイデアと、0インデックスへの切り替えにより、-12バイトに感謝します。


2
カウンターを持ち歩く代わりに、無限リストを作成してインデックスを作成することにより、96バイト
-Zgarb

1
@Zgarbどうもありがとう!0インデックスに切り替えると、わずか94バイトになります。
ライコニ

5

TI-BASIC、108の 103 102 98バイト

入力と出力はに保存されAnsます。出力は1から始まります。

Ans→N
seq(X,X,2,9³→A
1→P
For(I,1,N
1→X:∟A(P→V
For(F,2,√(V
If X and not(fPart(V/F:Then
DelVar XV/F→∟A(P
P-1→P
F+∟A(P→∟A(P
End
End
P+X→P
End

あなたはのオフバイトを取ることができますfPart(∟A(P)/F:fPart(F¹∟A(P:。次の行でも同じです。
スコットミルナー

@ScottMilnerそれは常に機能するとは限りません。 not(fPart(7⁻¹7は0ですnot(fPart(7/7が1です。
kamoroso94

5

MATL、41バイト

:Q1y"XHyw)Zp?5MQ}1MtYf1)/H(8MyfHq=*+9M]]&

出力は1ベースです。プログラムは、オンラインインタープリターの最後のテストケースでタイムアウトします。

オンラインでお試しください!

説明

プログラムは、チャレンジで説明されている手順を適用します。そのために、MATLの手動および自動クリップボードを非常に頻繁に使用します。

最小因子は、素因数分解の最初のエントリとして取得されます。

「分割」更新は、配列Aの対応するエントリを上書きすることによって行われます。「追加」更新は、目的の位置を除いてゼロを含む配列をAに要素ごとに追加することによって行われます。

:Q        % Implicitly input n. Push array [2 3 ... n+1]. This is the initial array A. 
          % It contains all required positions. Some values will be overwritten
1         % Push 1. This is the initial value for p
y         % Duplicate from below
"         % For each loop. This executes the following n times.
          %   STACK (contents whosn bottom to top): A, p
  XH      %   Copy p into clipboard H
  y       %   Duplicate from below. STACK: A, p, A
  w       %   Swap. STACK: A, A, p
  )       %   Reference indexing. STACK: A, A[p]
  Zp      %   Isprime. STACK: A, false/true
  ?       %   If true (that is, if A[p] is prime)
    5M    %     Push p from automatic clipboard. STACK: A, p
    Q     %     Add 1. STACK: A, p+1
  }       %   Else (that is, if A[p] is not prime)
    1M    %     Push A[p] from automatic clipboard. STACK: A, A[p]
    t     %     Duplicate. STACK: A, A[p], A[p]
    Yf    %     Prime factors, with repetitions. STACK: A, A[p], prime factors of A[p]
    1)    %     Get first element, d. STACK: A, A[p], d
    /     %     Divide. STACK: A, A[p]/d
    H     %     Push p from clipboard H. STACK: A, A[p]/d, p
    (     %     Assignment indexing: write value. STACK: A with A[p] updated
    8M    %     Push d from automatic clipboard.
    y     %     Duplicate from below. STACK: A with A[p] updated, d, A with A[p] updated
    f     %     Find: push indices of nonzero entries.
          %     STACK: A with A[p] updated, d, [1 2 ... n]
    Hq    %     Push p from clipboard H, subtract 1.
          %     STACK: A with A[p] updated, d, [1 2 ... n], p-1
    =     %     Test for equality, element-wise.
          %     STACK: A with A[p] updated, d, [0 ... 0 1 0 ... 0]
    *     %     Multiply, element-wise. STACK: A with A[p] updated, [0 ... 0 d 0 ... 0]
    +     %     Add, element-wise. STACK: A with A[p-1] and A[p] updated
    9M    %     Push p-1 from automatic clipboard.
          %     STACK: A with A[p-1] and A[p] updated, p-1
  ]       %   End if. The stack contains the updated array and index
]         % End for each. Process the next iteration
&         % Specify that the following implicit display function should display only
          % the top of the stack. Implicitly display


3

PARI / GP、87バイト

f(n)=A=[2..9^5];p=1;for(i=1,n,q=factor(A[p])[1,1];if(A[p]-q,A[p]/=q;p--;A[p]+=q,p++));p

かなり一目瞭然(ゴルフっぽくない)。f(n)=部品を数えない場合、82バイトです。n->(85バイト)で開始することもできます。

1インデックス付き言語です。


編集:変更illustrate(n,m)=A=[2..m+1];p=1;for(i=1,n,for(j=1,m,printf("%5s",if(j==p,Str(">",A[j],"<"),Str(A[j]," "))));print();q=factor(A[p])[1,1];if(A[p]!=q,A[p]/=q;p--;A[p]+=q,p++))により、アリの歩行の図が印刷されます(十分に広いターミナルが与えられた場合)。たとえばillustrate(150,25)、次のように、25列で最初の150ステップを実行します。

  > 2 <3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2> 3 <4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 3> 4 <5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2> 5 <2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5> 2 <5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2> 5 <6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2 5> 6 <7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2> 7 <3 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2 7> 3 <7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2 7 3> 7 <8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2 7 3 7> 8 <9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2 7 3> 9 <4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2 7> 6 <3 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 2> 9 <3 3 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5> 5 <3 3 3 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5> 3 <3 3 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3> 3 <3 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3> 3 <4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 3> 4 <9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3> 5 <2 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5> 2 <9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 2> 9 <10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5> 5 <3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5> 3 <10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 3> 10 <11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5> 5 <5 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 5> 5 <11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 5 5> 11 <12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 5 5 11> 12 <13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 5 5> 13 <6 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 5 5 13> 6 <13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 5 5> 15 <3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 5> 8 <5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5> 7 <4 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5 7> 4 <5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5 5> 9 <2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 5> 8 <3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3> 7 <4 3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3 7> 4 <3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3 3> 9 <2 3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 3> 6 <3 2 3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5> 5 <3 3 2 3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5> 3 <3 2 3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3> 3 <2 3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3> 2 <3 2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2> 3 <2 5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3> 2 <5 3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2> 5 <3 13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 5> 3 <13 14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 5 3> 13 <14 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 5 3 13> 14 <15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 5 3> 15 <7 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 5> 6 <5 7 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2> 7 <3 5 7 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7> 3 <5 7 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3> 5 <7 15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 5> 7 <15 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 5 7> 15 <16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 5> 10 <5 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3> 7 <5 5 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 7> 5 <5 16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 7 5> 5 <16 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 7 5 5> 16 <17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 7 5> 7 <8 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 7 5 7> 8 <17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 7 5> 9 <4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3 7> 8 <3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7 3> 9 <4 3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2 7> 6 <3 4 3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 2> 9 <3 3 4 3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3> 5 <3 3 3 4 3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5> 3 <3 3 4 3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3> 3 <3 4 3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3> 3 <4 3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 3> 4 <3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3> 5 <2 3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5> 2 <3 4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2> 3 <4 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 3> 4 <17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2> 5 <2 17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 5> 2 <17 18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 5 2> 17 <18 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 5 2 17> 18 <19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 5 2> 19 <9 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 5 2 19> 9 <19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 5 2> 22 <3 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 5> 4 <11 3 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2> 7 <2 11 3 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7> 2 <11 3 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2> 11 <3 19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 11> 3 <19 20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 11 3> 19 <20 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 11 3 19> 20 <21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 11 3> 21 <10 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 11> 6 <7 10 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2> 13 <3 7 10 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 13> 3 <7 10 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 13 3> 7 <10 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 13 3 7> 10 <21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 13 3> 9 <5 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2 13> 6 <3 5 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 2> 15 <3 3 5 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7> 5 <5 3 3 5 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5> 5 <3 3 5 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5> 3 <3 5 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3> 3 <5 21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 3> 5 <21 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 3 5> 21 <22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 3> 8 <7 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3> 5 <4 7 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 5> 4 <7 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3> 7 <2 7 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7> 2 <7 22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 2> 7 <22 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 2 7> 22 <23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 2> 9 <11 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7> 5 <3 11 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5> 3 <11 23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5 3> 11 <23 24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5 3 11> 23 <24 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5 3 11 23> 24 <25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5 3 11> 25 <12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5 3> 16 <5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5> 5 <8 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5 5> 8 <5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5> 7 <4 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5 7> 4 <5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7 5> 9 <2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3 7> 8 <3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5 3> 9 <4 3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 5> 6 <3 4 3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5> 7 <3 3 4 3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7> 3 <3 4 3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3> 3 <4 3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 3> 4 <3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3> 5 <2 3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5> 2 <3 2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2> 3 <2 5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3> 2 <5 12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 2> 5 <12 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 2 5> 12 <25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 2> 7 <6 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 2 7> 6 <25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 2> 9 <3 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3> 5 <3 3 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 5> 3 <3 25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 5 3> 3 <25 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 5 3 3> 25 <26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 5 3> 8 <5 26
   2 5 5 5 3 3 2 3 5 3 3 5 2 7 5 7 3 5 2 3 5> 5 <4 5 26
   

2

パイソン2142の 127バイト

  • Sherlock9のおかげで15バイト節約されました。
T=range(2,input()+2);p=0
for _ in T:
 m=T[p];d=min(k for k in range(2,m+1)if m%k<1);p+=1
 if d<m:T[p-1]/=d;p-=2;T[p]+=d
print p

オンラインでお試しください!




@FelipeNardiBatista残念ながら、あなたの提案はテストケースではうまくいかないようですn<=4
Sherlock9

2

Mathematica、118 103バイト

(s=Range[2,5^6];t=1;Do[If[PrimeQ@s[[t]],t++,s[[t]]/=(k=#2&@@ Divisors@s[[t]]);s[[t-1]]+=k;t--],#];t-1)&


オンラインでお試しください!

Martin Enderは15バイトを節約しました


の前に空きスペースがありDivisors、のために中置表記法を使用Doできtt-1(1ベースの結果)の代わりにそのまま戻ることができます。
マーティンエンダー

2

Pythonの3158の 149 133バイト

これは、コードがすべてのテストケースで機能することを確認するために、1つまたは2つの癖がある簡単な手続き型実装です。[*range(2,n+9)]Aが十分な大きさであることを確認するために使用します(を除いてn<3n+9十分すぎるほどです)。このelse節は、古いA[p]dでデクリメントしp、次にd新しいA[p]に追加しますが、これは間違いなくコーディングの習慣として不適切です。そうでなければ、かなり簡単です。ゴルフの提案を歓迎します!

編集:sympy Halvard Hummelのおかげで-9バイト。Felipe Nardi Batistaから-14バイト、Jonathan FrechのPython 2回答からのいくつかのキューから-6バイト

p,_,*A=range(int(input())+2)
for _ in A:
 m=A[p];d=min(k for k in range(2,m+1)if m%k<1);p+=1
 if d<m:A[p-1]//=d;p-=2;A[p]+=d
print(p)

オンラインでお試しください!



完全なプログラムにして148バイト
フェリペナルディバティスタ

if d-m:A[p]...そして、else:p+=1バイトを保存する
フェリペ・ナルディバティスタ

elseステートメントを削除して143バイト
フェリペナルディバティスタ

elseステートメントを削除した後、関数バージョンとバイトの違いはありません
フェリペナルディバティスタ

2

PHP、102 + 1バイト

for($a=range(2,$argn);$argn--;$d<$a[+$p]?$a[$p--]/=$d+!$a[$p]+=$d:$p++)for($d=1;$a[+$p]%++$d;);echo$p;

でパイプとして実行する-R、オンラインで試してください

入力用の空の出力0; リテラルの+echoに挿入0

または、この1インデックスバージョン(103 + 1バイト)を使用します。

for($a=range($p=1,$argn);$argn--;$d<$a[$p]?$a[$p--]/=$d+!$a[$p]+=$d:$p++)for($d=1;$a[$p]%++$d;);echo$p;

2

R、123バイト

簡単な実装。これは関数として提供され、入力として動きの数を取り、位置pを返します。

シーケンスをループし、規則に従ってポインターを前後に移動します。出力は0ベースです。

注:数値xの最小の素因数を見つけるために、0からxまでのすべての整数に対するxのモジュラスを計算します。次に、常に[0,1、...、x]である0に等しいモジュラスを持つ数値を抽出します。3番目のそのような数がxでない場合、それはxの最小の素因数です。

p=function(l){w=0:l;v=w+1;j=1;for(i in w){y=v[j];x=w[!y%%w][3]
if(x%in%c(NA,y))j=j+1
else{v[j]=y/x;j=j-1;v[j]=v[j]+x}}
j-2}

オンラインでお試しください!


2

C(gcc)、152 148バイト

縮小

int f(int n){int*A=malloc(++n*4),p=0,i,q;for(i=0;i<n;i++)A[i]=i+2;for(i=1;i<n;i++){for(q=2;A[p]%q;q++);if(A[p++]>q){A[--p]/=q;A[--p]+=q;}}return p;}

コメント付きのフォーマット

int f(int n) {
  int *A = malloc(++n * 4), p = 0, i, q;
  // Initialize array A
  for (i = 0; i < n; i++)
    A[i] = i + 2;
  // Do n step (remember n was incremented)
  for (i = 1; i < n; i++) {
    // Find smallest divisor
    for (q = 2; A[p] % q; q++)
      ;
    if (A[p++] > q) {
      A[--p] /= q;
      A[--p] += q;
    }
  }
  return p;
}

テストの主な機能

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char **argv) {
  if (argc != 2)
    return 2;
  int n = atoi(argv[1]);
  int p = f(n);
  printf("%d => %d\n", n, p);
  return 0;
}

各ステップを表示するため

  1. f()内でdisplay()を宣言します

    int f(int n) {
      int *A = malloc(++n * 4), p = 0, i, q;
      void display(void) {
        for (int i=0; i < p; i++) {
          printf(" %d", A[i]);
        }
        printf(" \033[1;31m%d\033[m", A[p]);
        if (p+1 < n)
          printf(" %d", A[p+1]);
        printf("\n");
      }
      ...
  2. display()を呼び出します

      A[i] = i + 2;
    display();
  3. display()を呼び出します

      }
      display();
    }

Aを配列として宣言し、可能であればループの前にループコントロールを初期化することにより、いくつかのバイト削ることができますか?
モニカを

1

Clojure、185バイト

#(loop[[n p][(vec(range 2 1e3))0]i %](if(= i 0)p(recur(if-let[q(first(for[i(range 2(n p)):when(=(mod(n p)i)0)]i))][(assoc n p(/(n p)q)(dec p)(+(n(dec p))q))(dec p)][n(inc p)])(dec i))))

「状態」の編集は、Clojureでは理想的ではありません。入力が大きい場合は指数を大きくする必要があります。


なぜパターンマッチングを使用したのloopですか?それなしで数バイトを失うことができるはずです。
-clismique

また、first物をsomeステートメントに変更できるかもしれません。
clismique

パターンマッチングがなければrecurif-letブランチごとに1つずつ、2回繰り返す必要がありました。また(dec i)、複製されます。some述語が必要+ですfirst。数値を扱っているので使用できますが、これはの文字よりも1文字長くなっています。CMIIW
NikoNyrh

1

Java 8、138 135バイト

n->{int a[]=new int[++n],s=0,p=0,j=0;for(;j<n;a[j++]=j+1);for(;++s<n;p++)for(j=1;++j<a[p];)if(a[p]%j<1){a[p--]/=j;a[p--]+=j;}return p;}

説明:

ここで試してみてください。

n->{                     // Method with integer as both parameter and return-type
  int a[]=new int[++n],  //  Integer-array with a length of `n+1`
      s=0,               //  Steps-counter (starting at 0)
      p=0,               //  Current position (starting at 0)
      j=0;               //  Index integer (starting at 0)
  for(;j<n;              //  Loop (1) from 0 to the input (inclusive due to `++n` above)
    a[j++]=j+1           //   And fill the array with 2 through `n+2`
  );                     //  End of loop (1)
  for(;++s<n;            //  Loop (2) `n` amount of steps:
      p++)               //    And after every iteration: increase position `p` by 1
    for(j=1;             //   Reset `j` to 1
        ++j<a[p];)       //   Inner loop (3) from 2 to `a[p]` (the current item)
      if(a[p]%j<1){      //    If the current item is divisible by `j`:
        a[p--]/=j;       //     Divide the current item by `j`
        a[p--]+=j;}      //     And increase the previous item by `j`
                         //     And set position `p` two steps back (with both `p--`)
                         //   End of inner loop (3) (implicit / single-line body)
                         //  End of loop (2) (implicit / single-line body)
  return p;              //  Return the resulting position `p`
}                        // End of method

1

Clojure、198 193 191バイト

これは厳しくゴルフする必要があります...

#(loop[i(vec(range 2(+ % 9)))c 0 p 0](if(= % c)p(let[d(dec p)u(i p)f(some(fn[n](if(=(mod u n)0)n))(range 2(inc u)))e(= u f)](recur(if e i(assoc i d(+(i d)f)p(/ u f)))(inc c)(if e(inc p)d)))))

ゴルフ1:に変更(first(filter ...))して5バイトを保存(some ...)

ゴルフ2:に変更(zero? ...)して2バイトを保存(= ... 0)


使用法:

(#(...) 10000) => 512

未ゴルフコード:

(defn prime-ant [n]
  (loop [counter 0
         pos 0
         items (vec (range 2 (+ n 9)))]
    (if (= n counter) pos
      (let [cur-item (nth items pos)
            prime-factor
            (some #(if (zero? (mod cur-item %)) %)
              (range 2 (inc cur-item)))
            equals? (= cur-item prime-factor)]
        (recur
          (inc counter)
          (if equals? (inc pos) (dec pos))
          (if equals? items
            (assoc items
              (dec pos) (+ (items (dec pos)) prime-factor)
              pos (/ cur-item prime-factor))))))))
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.