最小合計で合同リストを生成する


24

2つのリストABは、それらの長さが同じで、比較する要素が等しい場合にA一致しBます。

言い換えると、任意の2つの有効なインデックスxy

  • の場合A[x] = A[y]、その後B[x] = B[y]
  • の場合A[x] != A[y]、その後B[x] != B[y]

たとえば、リスト[1, 2, 1, 4, 5][0, 1, 0, 2, 3]は一致しています。

タスク

非負の整数の空でないリストが与えられた場合A、の整数の和を最小化しながら、と一致するような非負の整数の新しいリストを返します。BAB

潜在的に多くの有効な出力があります。たとえば、リスト[12, 700, 3]では、の順列はすべて[0, 1, 2]有効な出力と見なされます。

テストケース

Format:
input ->
one possible valid output

[1 2 1 4 5] ->
[0 1 0 2 3] (this is the example given above)

[3 2 2 1 5 7 2] ->
[1 0 0 2 3 4 0]

[8 8 8 8 8] ->
[0 0 0 0 0]

[2] ->
[0]

[8 6 8 4 6 8 2 4 6 8 0 2 4 6 8] ->
[0 1 0 2 1 0 3 2 1 0 4 3 2 1 0]

[14 1] ->
[1 0]

[19 6 4 9 14 17 10 9 6 14 8 14 6 15] ->
[8 0 3 2 1 7 5 2 0 1 4 1 0 6]

[15] ->
[0]

[1 18 4 8 6 19 12 17 6 13 7 6 8 1 6] ->
[1 8 3 2 0 9 5 7 0 6 4 0 2 1 0]

[9 10 11 9 7 11 16 17 11 8 7] ->
[2 4 0 2 1 0 5 6 0 3 1]

[1 3 16 19 14] ->
[0 1 3 4 2]

[18 8] ->
[1 0]

[13 4 9 6] ->
[3 0 2 1]

[16 16 18 6 12 10 4 6] ->
[1 1 5 0 4 3 2 0]

[11 18] ->
[0 1]

[14 18 18 11 9 8 13 3 3 4] ->
[7 1 1 5 4 3 6 0 0 2]

[20 19 1 1 13] ->
[3 2 0 0 1]

[12] ->
[0]

[1 14 20 4 18 15 19] ->
[0 2 6 1 4 3 5]

[13 18 20] ->
[0 1 2]

[9 1 12 2] ->
[2 0 3 1]

[15 11 2 9 10 19 17 10 19 11 16 5 13 2] ->
[7 2 0 5 1 3 9 1 3 2 8 4 6 0]

[5 4 2 2 19 14 18 11 3 12 20 14 2 19 7] ->
[5 4 0 0 2 1 9 7 3 8 10 1 0 2 6]

[9 11 13 13 13 12 17 8 4] ->
[3 4 0 0 0 5 6 2 1]

[10 14 16 17 7 4 3] ->
[3 4 5 6 2 1 0]

[2 4 8 7 8 19 16 11 10 19 4 7 8] ->
[4 1 0 2 0 3 7 6 5 3 1 2 0]

[15 17 20 18 20 13 6 10 4 19 9 15 18 17 5] ->
[0 1 3 2 3 9 6 8 4 10 7 0 2 1 5]

[15 14 4 5 5 5 3 3 19 12 4] ->
[5 4 2 0 0 0 1 1 6 3 2]

[7 12] ->
[0 1]

[18 5 18 2 5 20 8 8] ->
[2 0 2 3 0 4 1 1]

[4 6 10 7 3 1] ->
[2 3 5 4 1 0]

[5] ->
[0]

[6 12 14 18] ->
[0 1 2 3]

[7 15 13 3 4 7 20] ->
[0 4 3 1 2 0 5]

[10 15 19 14] ->
[0 2 3 1]

[14] ->
[0]

[19 10 20 12 17 3 6 16] ->
[6 2 7 3 5 0 1 4]

[9 4 7 18 18 15 3] ->
[4 2 3 0 0 5 1]

[7 4 13 7] ->
[0 1 2 0]

[19 1 10 3 1] ->
[3 0 2 1 0]

[8 14 20 4] ->
[1 2 3 0]

[17 20 18 11 1 15 7 2] ->
[5 7 6 3 0 4 2 1]

[11 4 3 17] ->
[2 1 0 3]

[1 9 15 1 20 8 6] ->
[0 3 4 0 5 2 1]

[16 13 10] ->
[2 1 0]

[17 20 20 12 19 10 19 7 8 5 12 19] ->
[7 2 2 1 0 6 0 4 5 3 1 0]

[18 11] ->
[1 0]

[2 16 7 12 10 18 4 14 14 7 15 4 8 3 14] ->
[3 9 2 7 6 10 1 0 0 2 8 1 5 4 0]

[5 7 2 2 16 14 7 7 18 19 16] ->
[3 0 1 1 2 4 0 0 5 6 2]

[8 6 17 5 10 2 14] ->
[3 2 6 1 4 0 5]

これはであるため、最短の有効な送信(バイト単位)が勝ちます。


回答:




4

Japt、11バイト

£â ñ@è¦XÃbX

オンラインでテストしてください!

説明

 £   â ñ@  è¦ Xà bX
UmX{Uâ ñX{Uè!=X} bX}   Ungolfed
                       Implicit: U = input array
UmX{               }   Map each item X in the input to:
    Uâ                   Take the unique items of U.
       ñX{     }         Sort each item X in this by
          Uè!=X            how many items in U are not equal to X.
                         This sorts the items that occur most to the front of the list.
                 bX      Return the index of X in this list.
                       Implicit: output result of last expression

2

J、11バイト

i.~~.\:#/.~

オンラインでお試しください!

説明

i.~~.\:#/.~  Input: array A
       #/.~  Frequency of each unique character, sorted by first appearance
   ~.        Unique, sorted by first appearance
     \:      Sort down the uniques using their frequencies
i.~          First index in that for each element of A


2

Haskell93 91 85バイト

import Data.List
f a=[i|x<-a,(i,y:_)<-zip[0..]$sortOn((0-).length)$group$sort a,x==y]

オンラインでお試しください!

編集:6バイトを削除してくれた@Laikoniに感謝します!

それほど短くはありませんが、他に何も考えられません。考え方は、配列(x<-a)を反復処理し、タプルリスト((i,y:_)<-... ,x==y)でルックアップを実行し、その共通度に基づいて入力の各一意の要素に非負の整数を割り当てます。そのタプルリストは、最初sortに入力を入力し、group等しい要素のサブリストに入れ、そのリストをサブリストのsortOn((0-).length)長さでソートし(;長さは「降順」にソートするために否定されます)、最後に無限リストで圧縮することによって生成されますパターンマッチングを使用して、サブリストから実際の要素をに抽出しyます。


1
パターン(i,y:_)を照合してhead<$>パーツをドロップし、括弧をで置き換えることができ$ます。
ライコニ


1

CJam、17 14バイト

ピーター・テイラーのおかげで-3バイト

これは、テストケースの生成に使用したプログラムのゴルフ版です。

{_$e`$W%1f=f#}

これは、スタック上の入力として入力を期待し、スタック上の配列を出力する匿名ブロックです。

説明:

{_$e`$W%1f=f#} Stack:                  [1 2 1 4 5]
 _             Duplicate:              [1 2 1 4 5] [1 2 1 4 5]
  $            Sort:                   [1 2 1 4 5] [1 1 2 4 5]
   e`          Run-length encode:      [1 2 1 4 5] [[2 1] [1 2] [1 4] [1 5]]
     $         Sort lexicographically: [1 2 1 4 5] [[1 2] [1 4] [1 5] [2 1]]
      W%       Reverse:                [1 2 1 4 5] [[2 1] [1 5] [1 4] [1 2]]
        1f=    Second element of each: [1 2 1 4 5] [1 5 4 2]
           f#  Vectorized indexing:    [0 3 0 2 1]

次のように分割することで、3バイトのみの逆順でソートできます$W%
ピーターテイラー

@PeterTaylorああ、配列の辞書編集の比較が忘れられない。ありがとう。
エソランジングフルーツ

1

TI-BASIC、66バイト

Ans+max(Ans+1)seq(sum(Ans=Ans(I)),I,1,dim(Ans→A
cumSum(Ans→B
SortD(∟A,∟B
cumSum(0≠ΔList(augment({0},∟A→A
SortA(∟B,∟A
∟A-1

説明

seq(sum(Ans=Ans(I)),I,1,dim(Ans    Calculates the frequency of each element of Ans.
                                   Comparing a value to a list returns a list of booleans,
                                   so taking the sum will produce the number of matches.

Ans+max(Ans+1)                     Multiplies each frequency by one more than the max element,
                                   then adds each original value.
                                   This ensures that identical values with the same frequency
                                   will be grouped together when sorting.
                                   Additionally, all resulting values will be positive.

→A                                 Stores to ∟A.

cumSum(Ans→B                       Stores the prefix sum of the result into ∟B.
                                   Since ∟A has only positive values, ∟B is guaranteed
                                   to be strictly increasing.

SortD(∟A,∟B                        Sort ∟A in descending order (by frequency), grouping
                                   identical values together. Also, dependently sort ∟B
                                   so the original ordering can be restored.

       0≠ΔList(augment({0},∟A      Prepends a 0 to ∟A and compares each consecutive difference
                                   to 0. This places a 1 at each element that is different
                                   from the previous element, and 0 everywhere else.
                                   The first element is never 0, so it is considered different.

cumSum(                      →A    Takes the prefix sum of this list and stores to ∟A.
                                   Since there is a 1 at each element with a new value,
                                   the running sum will increase by 1 at each value change.
                                   As a result, we've created a unique mapping.

SortA(∟B,∟A                        Sorts ∟B in ascending order with ∟A as a dependent,
                                   restoring the original element ordering.

∟A-1                               Since we started counting up at 1 instead of 0,
                                   subtract 1 from each element in ∟A and return it.


1

JavaScript(ES6)、91バイト

頻度でソートされた一意の値のリストを使用します。

x=>x.map(x=>Object.keys(C).sort((a,b)=>C[b]-C[a]).indexOf(x+''),C={},x.map(v=>C[v]=-~C[v]))

テスト

var F=
x=>x.map(x=>Object.keys(C).sort((a,b)=>C[b]-C[a]).indexOf(x+''),C={},x.map(v=>C[v]=-~C[v]))

Test=`[1 2 1 4 5] -> [0 1 0 2 3]
[3 2 2 1 5 7 2] -> [1 0 0 2 3 4 0]
[8 8 8 8 8] -> [0 0 0 0 0]
[2] -> [0]
[8 6 8 4 6 8 2 4 6 8 0 2 4 6 8] -> [0 1 0 2 1 0 3 2 1 0 4 3 2 1 0]
[14 1] -> [1 0]
[19 6 4 9 14 17 10 9 6 14 8 14 6 15] -> [8 0 3 2 1 7 5 2 0 1 4 1 0 6]
[15] -> [0]
[1 18 4 8 6 19 12 17 6 13 7 6 8 1 6] -> [1 8 3 2 0 9 5 7 0 6 4 0 2 1 0]
[9 10 11 9 7 11 16 17 11 8 7] -> [2 4 0 2 1 0 5 6 0 3 1]
[1 3 16 19 14] -> [0 1 3 4 2]
[18 8] -> [1 0]
[13 4 9 6] -> [3 0 2 1]
[16 16 18 6 12 10 4 6] -> [1 1 5 0 4 3 2 0]
[11 18] -> [0 1]
[14 18 18 11 9 8 13 3 3 4] -> [7 1 1 5 4 3 6 0 0 2]
[20 19 1 1 13] -> [3 2 0 0 1]
[12] -> [0]
[1 14 20 4 18 15 19] -> [0 2 6 1 4 3 5]
[13 18 20] -> [0 1 2]
[9 1 12 2] -> [2 0 3 1]
[15 11 2 9 10 19 17 10 19 11 16 5 13 2] -> [7 2 0 5 1 3 9 1 3 2 8 4 6 0]
[5 4 2 2 19 14 18 11 3 12 20 14 2 19 7] -> [5 4 0 0 2 1 9 7 3 8 10 1 0 2 6]
[9 11 13 13 13 12 17 8 4] -> [3 4 0 0 0 5 6 2 1]
[10 14 16 17 7 4 3] -> [3 4 5 6 2 1 0]
[2 4 8 7 8 19 16 11 10 19 4 7 8] -> [4 1 0 2 0 3 7 6 5 3 1 2 0]
[15 17 20 18 20 13 6 10 4 19 9 15 18 17 5] -> [0 1 3 2 3 9 6 8 4 10 7 0 2 1 5]
[15 14 4 5 5 5 3 3 19 12 4] -> [5 4 2 0 0 0 1 1 6 3 2]
[7 12] -> [0 1]
[18 5 18 2 5 20 8 8] -> [2 0 2 3 0 4 1 1]
[4 6 10 7 3 1] -> [2 3 5 4 1 0]
[5] -> [0]
[6 12 14 18] -> [0 1 2 3]
[7 15 13 3 4 7 20] -> [0 4 3 1 2 0 5]
[10 15 19 14] -> [0 2 3 1]
[14] -> [0]
[19 10 20 12 17 3 6 16] -> [6 2 7 3 5 0 1 4]
[9 4 7 18 18 15 3] -> [4 2 3 0 0 5 1]
[7 4 13 7] -> [0 1 2 0]
[19 1 10 3 1] -> [3 0 2 1 0]
[8 14 20 4] -> [1 2 3 0]
[17 20 18 11 1 15 7 2] -> [5 7 6 3 0 4 2 1]
[11 4 3 17] -> [2 1 0 3]
[1 9 15 1 20 8 6] -> [0 3 4 0 5 2 1]
[16 13 10] -> [2 1 0]
[17 20 20 12 19 10 19 7 8 5 12 19] -> [7 2 2 1 0 6 0 4 5 3 1 0]
[18 11] -> [1 0]
[2 16 7 12 10 18 4 14 14 7 15 4 8 3 14] -> [3 9 2 7 6 10 1 0 0 2 8 1 5 4 0]
[5 7 2 2 16 14 7 7 18 19 16] -> [3 0 1 1 2 4 0 0 5 6 2]
[8 6 17 5 10 2 14] -> [3 2 6 1 4 0 5]`

Test.split(`\n`).forEach(row => {
  row=row.match(/\d+/g)
  var nv = row.length/2
  var tc = row.slice(0,nv)
  var exp = row.slice(nv)
  var xsum = eval(exp.join`+`)
  var result = F(tc)
  var rsum = eval(result.join`+`)
  var ok = xsum == rsum
  console.log('Test ' + (ok ? 'OK':'KO')
  + '\nInput [' + tc 
  + ']\nExpected (sum ' + xsum + ') ['+ exp 
  + ']\nResult (sum ' + rsum + ') [' + result + ']')
  
})



0

R、58バイト

x=scan();cat(match(x,names(z<-table(x))[rev(order(z))])-1)

オンラインでお試しください!

Port of Chas BrownのPythonの回答

table各要素の数を計算するx(ように値を格納するnames属性)orderにおけるインデックスの順列を返しz、そしてmatch最初のマッチのインデックスを返しxにしますnames(z)。次に1、Rインデックスが1から始まるため、減算します。

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.