魔法は可能ですか?


18

魔方陣は、あるn行N範囲の異なる正の整数で満たされ、正方格子、1,2 ... N ^ 2、各セルは異なる整数であり、各行の整数の和を含むように、列と対角線は等しい。

あなたの仕事は、正の数字で構成されるnn列の行列と、空のセルのプレースホルダー文字(0を使用しますが、任意の非数値文字またはデータ型を使用できます)を取得し、それが不足している数字を入力して魔方陣を作ることが可能

行列は少なくとも2行2列、最大10行10列になります。最小の非自明な魔方陣は3行3列です。入力行列の数値はn ^ 2よりも大きい場合があり、すべてのセルが塗りつぶされる可能性があります。

テストケース:

2   2
2   0
False

8   0   6
0   5   0
0   9   2
True

16    2    3   13
 5   11   10    8
 9    7    6   12
 4   14   15    1
True

10   0   1
 0   5   9
 3   7   5
False

99    40    74     8    15    51     0    67     0     1
 0    41    55    14     0    57    64     0    98     0
81    47    56    20    22    63    70    54     0    88
 0    28     0    21     0    69    71    60    85    19
 0    34     0     2     9    75    52    61     0    25
24    65    49     0    90    26    33    42    17    76
 0     0    30    89    91     0    39    48     0    82
 6    72    31    95     0    38    45    29     0    13
12    53     0    96    78     0     0     0    10    94
18    59    43    77     0     0    27    36     0   100
True

うーん。私は..私は解決策のどこかを見てきたと思います
マシュー盧

1
対角線が正しくテストされていることを確認することが示唆テストケース:[ [ 1, 5, 9 ], [ 6, 7, 2 ], [ 8, 3, 4 ] ](falsy)
アルノー

プレースホルダー(つまり[[8, X1, 6], [X2, 5, X3], [X4, 9, 2]])に番号を付けることはできますか?
スコットミルナー

@Scott必ず、お気軽に...
Stewieグリフィン

回答:


4

JavaScript(ES6)、270 268バイト

マトリックスを2D配列として受け取ります。0またはを返します1

a=>(g=(x,y=0,w=a.length,p,R=a[y])=>[0,1,2,3].some(d=>a.some((r,y)=>(p=s)^(s=r.reduce((p,v,x)=>(o|=1<<(v=[v,(b=a[x])[y],b[x++],b[w-x]][d]),p+v),0))&&p),s=o=0)||o/2+1!=1<<w*w?R&&[...Array(w*w)].map((_,n)=>(p=R[x])==++n|!p&&(R[x]=n,g(z=(x+1)%w,y+!z),R[x]=p)):r=1)(r=0)&&r

テストケース

これは、最後のテストケースには明らかに遅すぎます。:-(


2

05AB1E、45 バイト

Zsgn©>‹®L¹˜Kœ0ªε\¹˜0y.;¹gô©O®øO®Å\O®Å/O)˜Ë}à*

00n200

4バイト少なくすることもできましたが、現在.;2Dリストの組み込みにバグがあります。:そして、.:予想されるが、仕事として.;、周りの仕事の...今ので、2Dリストに何もしない˜¹gô行列を平坦化します。.;リストで使用します。それを再びマトリックスに変換します。

オンラインそれを試してみてくださいまたはいくつかのより多くのテストケースを検証します。(注:チャレンジの説明の最後のテストケースは、0が多すぎるために含まれていません。)

説明:

Z               # Get the maximum of the (implicit) input-matrix (implicitly flattened)
                # (and without popping the matrix)
                #  i.e. [[8,0,6],[0,5,0],[0,0,2]] → 8
 s              # Swap to get the input-matrix again
  g             # Get its length (amount of rows)
                #  i.e. [[8,0,6],[0,5,0],[0,0,2]] → 3
   n            # Square it
                #  i.e. 3 → 9
    ©           # Store it in the register (without popping)
     >‹         # Check if the maximum is <= this squared matrix-dimension
                #  i.e. 8 <= 9 → 1 (truthy)
®               # Push the squared matrix-dimension again
 L              # Create a list in the range [1, squared_matrix_dimension]
                #  i.e. 9 → [1,2,3,4,5,6,7,8,9]
  ¹             # Push the input-matrix
   ˜            # Flatten it
                #  i.e. [[8,0,6],[0,5,0],[0,0,2]] → [8,0,6,0,5,0,0,0,2]
    K           # Remove all these numbers from the ranged list
                #  i.e. [1,2,3,4,5,6,7,8,9] and [8,0,6,0,5,0,0,0,2] → [1,3,4,7,9]
œ               # Get all possible permutations of the remaining numbers
                # (this part is the main bottleneck of the program;
                #  the more 0s and too high numbers, the more permutations)
                #   i.e. [1,3,4,7,9] → [[1,3,4,7,9],[1,3,4,9,7],...,[9,7,4,1,3],[9,7,4,3,1]]
 0ª             # Add an item 0 to the list (workaround for inputs without any 0s)
                #  i.e. [[1,3,4,7,9],[1,3,4,9,7],...,[9,7,4,1,3],[9,7,4,3,1]] 
                #   → [[1,3,4,7,9],[1,3,4,9,7],...,[9,7,4,1,3],[9,7,4,3,1],"0"] 
   ε            # Map each permutation `y` to:
    \           #  Remove the implicit `y` which we don't need yet
    ¹˜          #  Push the flattened input again
      0         #  Push a 0
       y        #  Push permutation `y`
        .;      #  Replace all 0s with the numbers in the permutation one by one
                #   i.e. [8,0,6,0,5,0,0,0,2] and [1,3,4,7,9]
                #    → [8,1,6,3,5,4,7,9,2]
          ¹g    #  Push the input-dimension again
            ô   #  And split the flattened list into parts of that size,
                #  basically transforming it back into a matrix
                #   i.e. [8,1,6,3,5,4,7,9,2] and 3 → [[8,1,6],[3,5,4],[7,9,2]]
             ©  #  Save the matrix with all 0s filled in in the register (without popping)
    O           #  Take the sum of each row
                #   i.e. [[8,1,6],[3,5,4],[7,9,2]] → [15,12,18]
    ®øO         #  Take the sum of each column
                #   i.e. [[8,1,6],[3,5,4],[7,9,2]] → [18,15,12]
    ®Å\O        #  Take the sum of the top-left to bottom-right main diagonal
                #   i.e. [[8,1,6],[3,5,4],[7,9,2]] → 15
    ®Å/O        #  Take the sum of the top-right to bottom-left main diagonal
                #   i.e. [[8,1,6],[3,5,4],[7,9,2]] → 18
    )           #  Wrap everything on the stack into a list
                #   → [[15,12,18],[18,15,12],15,18]
     ˜          #  Flatten it
                #   i.e. [[15,12,18],[18,15,12],15,18] → [15,12,18,18,15,12,15,18]
      Ë         #  Check if all values are equal
                #   i.e. [15,12,18,18,15,12,15,18] → 0 (falsey)
}               # After the map:
                #  → [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
 à              # Check if any are truthy by taking the maximum
                #  → 1 (truthy)
  *             # And multiply the two checks to verify both are truthy
                #  i.e. 1 and 1 → 1 (truthy)
                # (and output the result implicitly)

この部分©O®øO®Å\O®Å/O)˜ËVerify Magic Squareチャレンジの私の05AB1E回答でも使用されているため、コードのその部分に関するより詳細な説明については、その回答を参照してください。

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.