制限された3体問題の特定のケースを研究しています。いくつかのオブジェクトが馬蹄形の軌道パターンに従っていることをわかっています、と私は記事の中にいくつかのアドバイス、次のよC. Iにおける統合コードを通して何かを整理しようとしている制限三体の周期的な馬蹄形の軌道の家族、これにより、理想的な初期条件と重心系の方程式が得られます。(mは地球の質量であり、結果として質量の中心参照系での太陽の位置(x、y)は、3番目の物体の座標であり、(制限された問題が必要とする)質量がないと仮定されます。
「太陽」と「地球」の位置は、同じ参照系では(m、0)と(m-1,0)に固定されています。(地球が円軌道を持っていると仮定して、回転基準系。)
これらすべてから、システムを説明する方程式を計算しました。
Runge-Kutta 4のアルゴリズムを使用して、これらの方程式を統合しました。(私はコードが非常にねじれていることを知っていますが、私はポインターを使用できず、どこでも構造体を使用しています)。
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define dt 0.0001
#define N 100
typedef struct{
long double x,y;
}vec;
typedef struct{
vec k1,k2,k3,k4;
}runge;
typedef struct{
runge r,v;
}big;
double dS,dE,m;
double accx(double,double,double);
double accy(double,double,double);
void rad(vec);
big rungekutta(vec,vec);
vec moto(vec,runge);
double jacobi(vec);
int main(){
vec r,v;
big f;
double J,t;
int i,Num;
FILE* s1;
s1=fopen("HorseShoe.dat","w");
Num=(int)N/dt;
scanf("%Lf",&r.x);
scanf("%Lf",&r.y);
scanf("%Lf",&v.x);
scanf("%Lf",&v.y);
scanf("%lf",&m);
for(i=0;i<Num;i++){
t=(i+1)*dt;
rad(r);
f=rungekutta(r,v);
r=moto(r,f.r);
v=moto(v,f.v);
J=jacobi(r);
fprintf(s1,"%lf\t%Lf\t%Lf\t%Lf\t%Lf\t%lf\n",t,r.x,r.y,v.x,v.y,J);
}
return 0;
}
void rad(vec r){
dS=pow(r.x-m,2)+pow(r.y,2);
dE=pow(r.x-m+1,2)+pow(r.y,2);
}
double jacobi(vec r){
return pow(r.x,2)+pow(r.y,2)+2*(1-m)/dS+2*m/dE+m*(1-m);
}
double accx(double x,double y,double v){
return x-(x-m)*(1-m)/pow(pow(x-m,2)+pow(y,2),1.5)-m*(x-m+1)/pow(pow(x-m+1,2)+pow(y,2),1.5)+2*v;
}
double accy(double x,double y,double v){
return y-(1-m)*y/pow(pow(y,2)+pow(x-m,2),1.5)-m*y/pow(pow(y,2)+pow(x-m+1,2),1.5)-2*v;
}
big rungekutta(vec r,vec v){
big f;
f.r.k1.x=v.x;
f.r.k1.y=v.y;
f.v.k1.x=accx(r.x,r.y,v.y);
f.v.k1.y=accy(r.x,r.y,v.x);
f.r.k2.x=v.x+f.v.k1.x*dt/2;
f.r.k2.y=v.y+f.v.k1.y*dt/2;
f.v.k2.x=accx(r.x+f.r.k1.x*dt/2,r.y+f.r.k1.y*dt/2,v.y+f.v.k1.y*dt/2);
f.v.k2.y=accy(r.x+f.r.k1.x*dt/2,r.y+f.r.k1.y*dt/2,v.x+f.v.k1.x*dt/2);
f.r.k3.x=v.x+f.v.k2.x*dt/2;
f.r.k3.y=v.y+f.v.k2.y*dt/2;
f.v.k3.x=accx(r.x+f.r.k2.x*dt/2,r.y+f.r.k2.y*dt/2,v.y+f.v.k2.y*dt/2);
f.v.k3.y=accy(r.x+f.r.k2.x*dt/2,r.y+f.r.k2.y*dt/2,v.x+f.v.k2.x*dt/2);
f.r.k4.x=v.x+f.v.k3.x*dt;
f.r.k4.y=v.y+f.v.k3.y*dt;
f.v.k4.x=accx(r.x+f.r.k3.x*dt,r.y+f.r.k3.y*dt,v.y+f.v.k3.y*dt);
f.v.k4.y=accy(r.x+f.r.k3.x*dt,r.y+f.r.k3.y*dt,v.x+f.v.k3.x*dt);
return f;
}
vec moto(vec r,runge rk){
r.x+=(rk.k1.x+2*rk.k2.x+2*rk.k3.x+rk.k4.x)*dt/6;
r.y+=(rk.k1.y+2*rk.k2.y+2*rk.k3.y+rk.k4.y)*dt/6;
return r;
}
結果をプロットするとスパイラルが得られますが、与えられた入力を使用すると馬蹄軌道が得られます。私は多くの異なる入力を試しました(m = 0.0001とm = 0.000003、後者は地球と太陽の質量の実際の値と同じです(太陽の質量は1-m))。
何が悪いのかわからない(おそらくすべて:D)。