9
人工知能はハッキングに対して脆弱ですか?
論文「敵対的設定におけるディープラーニングの制限」では、ニューラルネットワークがトレーニングするデータセットを操作できる攻撃者によって、ニューラルネットワークがどのように破損する可能性があるかを探っています。著者たちは、手書き数字を読み取ることを目的としたニューラルネットワークで実験を行い、ニューラルネットワークでトレーニングされた手書き数字のサンプルを歪めることにより、その読み取り能力を弱めました。 悪意のある攻撃者がAIをハッキングしようとするのではないかと心配しています。例えば 自動運転車をだまして、一時停止標識と速度制限を誤って解釈する。 ATMのような顔認識のバイパス。 スパムフィルターのバイパス。 映画レビュー、ホテルなどのだまされやすい感情分析 異常検出エンジンのバイパス。 音声コマンドの偽造。 機械学習ベースの医療予測の誤分類。 どのような敵対効果が世界を混乱させる可能性がありますか?どうすればそれを防ぐことができますか?