2
アクティベーション機能の選び方は?
必要な出力と知っているアクティベーション関数のプロパティに応じて、出力レイヤーのアクティベーション関数を選択します。たとえば、確率を処理する場合はシグモイド関数を選択し、正の値を処理する場合はReLUを選択し、一般的な値を処理する場合は線形関数を選択します。 非表示のレイヤーでは、ReLUではなくリークしたReLUを使用し、シグモイドではなくtanhを回避します。もちろん、私は隠れた単位で線形関数を使用しません。 ただし、非表示層でのそれらの選択は、主に試行錯誤によるものです。 状況によっては、どのアクティベーション機能が適切に機能するかについての経験則はありますか?可能な限り一般的な状況を考えてみましょう。これは、レイヤーの深さ、NNの深さ、そのレイヤーのニューロンの数、選択したオプティマイザー、入力フィーチャの数を指す場合があります。そのレイヤー、このNNのアプリケーションなど で、彼/彼女の答えは、cantordustはELUとSELUのように、私は言及しなかったことを、他の活性化関数を指します。この情報は大歓迎です。ただし、アクティブ化関数が多いほど、非表示のレイヤーで使用する関数の選択に混乱が生じます。そして、コインを投げることがアクティベーション機能を選ぶ良い方法だとは思いません。