一次述語計算に多数の証明があると仮定します。また、その形式の数学の領域にも公理、帰納法、定理があると仮定します。
証明された各命題と、その特定の命題を取り巻く既存の理論の本体を、トレーニングセットの例として、また関連するラベルとしての命題の既知の良い証明と考えてください。ここで、このサンプルセットでトレーニングするために特別に設計されたディープな人工ネットワークと、そうするためにハイパーパラメーターが正しく設定されていることを考えます。
新しい命題の提示と、それを取り巻く既存の理論が入力で一次述語計算で提示することで、出力で証明を生成するような方法で、深い人工ネットワークを訓練することは可能ですか?
(もちろん、そのような証明は手動でチェックする必要があります。)
結果の良い証明の割合が十分に高い場合、訓練された深層ネットワークに命題を提案する遺伝的アルゴリズムを作成し、それによって証明を作成することは可能でしょうか?
それは可能ですか?
この種の深いネットワーク設計を使用して、Collatz予想またはRiemann予想を解決したり、数学者が正当な証明に到達できるように少なくともパターンを再配置することは可能でしょうか?