ディープラーニングは、複数の線形変換と非線形変換で構成される複数の処理層を持つディープグラフを使用して、データの高レベルの抽象化をモデル化しようとする一連のアルゴリズムに基づく機械学習の分岐です。
ディープニューラルネットワーク、たたみ込みディープニューラルネットワーク、ディープビリーフネットワーク、リカレントニューラルネットワークなどのさまざまなディープラーニングアーキテクチャが、コンピュータービジョン、自動音声認識、自然言語処理、音声認識、バイオインフォマティクスなどの分野に適用され、それらが生成することが示されていますさまざまなタスクに関する最新の結果。
することができ、深いニューラルネットワークや畳み込み深いニューラルネットワークは、と見ることがアンサンブルベースの機械学習の方法?それとも別のアプローチですか?